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Abstract

Context: Gastric cancer (GC) is a major global health burden, with drug resistance representing a critical barrier to effective

treatment. Understanding the mechanisms underlying drug resistance and leveraging advanced technologies, such as artificial

intelligence (AI), are essential for developing innovative therapeutic strategies.

Evidence Acquisition: This review systematically examines the primary mechanisms of drug resistance in GC, organized into

eight categories: Reduced drug uptake, enhanced drug efflux, impaired pro-drug activation or increased inactivation, molecular

target alterations, enhanced DNA damage repair, imbalance in apoptotic regulation, tumor microenvironment modifications,

and phenotypic changes. Additionally, the role of AI in addressing these challenges is explored, with a focus on omics-driven

insights, pathway analysis, biomarker discovery, and modeling drug-response relationships.

Results: The review highlights the transformative potential of AI in advancing precision therapy for GC. Key applications

include therapeutic stratification, optimization of drug combinations, adaptive therapy design, and integration with clinical

workflows. Challenges such as data quality, model interpretability, and the need for interdisciplinary collaboration are

identified, along with strategies to address these barriers. Future directions emphasize the development of explainable AI

models, integration of multi-omics and real-time patient data, and AI-driven drug discovery targeting resistance pathways.

Conclusions: By bridging research and clinical practice, AI offers a promising path to more effective, personalized, and

adaptive therapeutic strategies for GC. Overcoming existing challenges and leveraging AI's potential can significantly improve

treatment outcomes and address the pressing issue of drug resistance in GC.
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1. Context

1.1. Gastric Cancer: A Precision Medicine Challenge

Gastric cancer (GC) remains a significant global

health challenge, ranking among the leading causes of

cancer-related mortality worldwide. In 2020, it was

estimated that there were approximately 1.1 million new

cases and 770,000 deaths attributed to GC, with

incidence rates being on average twice as high in males

as in females (1). The burden of this disease is

particularly pronounced in Eastern Asia, where

countries such as Japan, Mongolia, and the Republic of

Korea report the highest incidence rates globally (1).

A critical challenge in the management of GC is the

considerable variability in patient responses to

therapies. This heterogeneity is influenced by factors

such as genetic mutations, epigenetic alterations, and

the tumor microenvironment, all of which contribute to

differing therapeutic outcomes. For instance, variability

in immune response and tumor biology across

individuals means that immunotherapy does not

uniformly benefit all patients with GC (2). Additionally,

the cellular and molecular heterogeneity of GC leads to
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variable results in chemotherapy, complicating

treatment strategies (3).

This variability underscores the necessity for

precision medicine approaches tailored to the unique

molecular profiles of individual patients, aiming to

enhance therapeutic efficacy and improve survival

outcomes.

1.2. Drug Resistance: A Barrier to Effective Treatment

Drug resistance is a major barrier to effective GC

treatment, driven by genetic, epigenetic, and

microenvironmental factors that contribute to therapy

failure and disease progression.

1.2.1. Genetic Modifications

Genomic instability, copy number alterations, and

genetic polymorphisms are among the critical factors

influencing drug response and resistance development

(4). Alterations in oncogenes and tumor suppressor

genes can drive resistance by activating survival

pathways or impairing apoptotic mechanisms. For

instance, mutations in genes such as TP53, HER2, and

MET have been associated with resistance to targeted

therapies in GC (5, 6).

1.2.2. Epigenetic Modifications

Epigenetic changes — such as DNA methylation,

histone modification, chromatin remodeling, and

noncoding RNAs — play a major role in cancer drug

resistance. Altered gene expression, epithelial-

mesenchymal transition (EMT), and cancer stem cell

maintenance driven by elements like miR-21, HOTAIR,

and SWI/SNF complexes contribute to resistance.

Targeted therapies, including DNA methyltransferase

(DNMT) and histone deacetylase (HDAC) inhibitors,

show potential in reversing this effect. Epigenetic

biomarkers are also emerging as tools for personalized

treatment and overcoming resistance (4).

1.2.3. Tumor Microenvironment

The tumor microenvironment (TME) contributes to

treatment resistance through interactions with

immune-suppressive cells such as cancer-associated

fibroblasts (CAFs), myeloid-derived suppressor cells

(MDSCs), and tumor-associated macrophages (TAMs).

Metabolic reprogramming, hypoxia, and extracellular

matrix (ECM) remodeling hinder immunity and drug

delivery, while the microbiota affects metabolism and

therapy response. Targeting these components offers

promising strategies to overcome resistance and

improve outcomes (4).

Overcoming resistance in GC requires precision

medicine tailored to each patient’s molecular profile.

Integrating genomic, epigenomic, and

microenvironmental data enables the identification of

targeted therapies, offering improved treatment

outcomes.

1.3. Role of Artificial Intelligence in Precision Oncology

Artificial intelligence is transforming precision

oncology by tackling drug resistance and enabling

personalized therapy. It integrates multi-omics data to

uncover resistance mechanisms and identify

biomarkers, guiding targeted treatments tailored to

each patient (7). Moreover, AI models predict individual

treatment responses, helping clinicians choose the most

effective strategies. For example, AI has been used to

forecast drug responses at single-cell resolution,

enhancing outcomes (8).

This review bridges AI insights with clinical

applications in precision oncology, highlighting current

methods for addressing drug resistance. It aims to

support the integration of AI into practice to advance

personalized treatments and improve patient

outcomes.

2. Drug Resistance Mechanisms in Gastric Cancer

Bioinformatics and systems biology have

transformed the discovery of genes and pathways

driving cancer progression and drug resistance.

Integrating multi-omics data has revealed key

dysregulated pathways and hub genes linked to GC

resistance. Network and enrichment analyses provide

insights into biomarkers and therapeutic targets,

supporting precision oncology strategies to overcome

resistance and enhance outcomes (9-15).

The main mechanisms of drug resistance in GC fall

into eight categories (Figure 1): Reduced drug uptake,

increased drug efflux, impaired activation or enhanced

inactivation of drugs, molecular target changes,

enhanced DNA repair, dysregulated apoptosis, tumor

microenvironment alterations, and phenotypic shifts

such as EMT and stem-like traits (16).

2.1. Reduced Drug Uptake

https://brieflands.com/articles/ijpr-159954
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Figure 1. Drug resistance mechanisms in gastric cancer (GC) (https://BioRender.com/d69h482).

Reduced drug uptake is a key mechanism of

chemoresistance in GC, driven by altered expression or

genetic variants of transport proteins. The down-

regulation of CTR1 (SLC31A1 gene) reduces cisplatin

sensitivity, while higher expression of SLCO1B3 and

other organic anion-transporting polypeptides (OATPs)

isoforms (2B1, 3A1, 4A1, 5A1) facilitates the uptake of

irinotecan, docetaxel, and methotrexate. The cancer-

specific variant of OATP1B3 is highly expressed in GC,

though its functional role remains unclear. Additionally,

ENT1 contributes to pyrimidine analog uptake, but 5-

fluorouracil (5-FU) resistance in GC suggests alternative

mechanisms beyond ENT-mediated uptake. These

transporters collectively influence drug sensitivity in GC

(16-18).

2.2. Enhanced Drug Efflux

Genetic alterations in ATP-binding cassette (ABC)

transporters contribute significantly to multidrug

resistance (MDR) in GC. MDR1 (ABCB1) expression is

regulated by deoxycytidine triphosphate

pyrophosphatase 1 (DCTPP1), which influences promoter

methylation; low DCTPP1 levels increase promoter

methylation and reduce MDR1 expression, affecting

resistance to cisplatin, oxaliplatin, and epirubicin. MRP1

(ABCC1) overexpression, often observed in cisplatin-

resistant GC, is linked to acquired resistance. MRP2

(ABCC2) expression is influenced by single nucleotide

polymorphisms (SNPs), such as the c.-24C > T variant,

which affects drug response to oxaliplatin. The MRP4

(ABCC4) is highly expressed in cisplatin-resistant GC,

with genetic inhibition improving sensitivity. BCRP

(ABCG2) expression is associated with poor survival and

resistance to cisplatin and 5-fluorouracil (5-FU), while

genetic manipulation strategies like ribozymes have

shown potential to overcome resistance. Similarly,

copper transporters ATP7A and ATP7B exhibit increased

expression in oxaliplatin- and cisplatin-resistant GC,

though their precise genetic regulation requires further

investigation. These genetic changes underscore

potential targets for combating GC chemoresistance (16,

17, 19, 20).

2.3. Decreased Levels of Active Therapeutic Agents

Chemoresistance in GC is driven by changes in

metabolic enzymes that inactivate antitumor drugs or

reduce pro-drug activation, resulting in lower

intracellular levels of active agents. CYP2A6, responsible

for converting tegafur to 5-fluorouracil (5-FU), is affected

by single nucleotide polymorphisms (SNPs) that reduce

its activity, impacting tumor sensitivity to 5-FU.

Thymidine phosphorylase (TP), crucial for 5-FU

activation, shows variable correlations with 5-FU

sensitivity and patient prognosis. Overexpression of

carboxylesterase 2 (CES2) enhances the activation of

capecitabine and irinotecan, while dihydropyrimidine
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dehydrogenase (DPD) overexpression reduces sensitivity

to 5-FU. Metallothioneins (MTs) are linked to resistance

to irinotecan and cisplatin, with conflicting data on

their role in prognosis. Glutathione-S-transferase (GST)

enzymes, particularly GSTP1, contribute to resistance by

forming inactive drug conjugates with glutathione,

although specific variants like GSTP1*B are associated

with better responses to 5-FU and oxaliplatin. UDP-

glucuronosyltransferases (UGTs), including UGT1A1,

influence irinotecan metabolism, with polymorphisms

linked to variable outcomes in GC treatment. These

genetic and expression changes highlight key

mechanisms driving chemoresistance in GC (16, 21-23).

2.4. Alterations in Molecular Targets

Chemoresistance in GC is influenced by genetic

changes in molecular targets critical for drug efficacy.

Thymidylate synthase (TS), inhibited by 5-fluorouracil (5-

FU), exhibits polymorphisms such as 2R/2R and 2R/3R

genotypes in the TS enhancer region, which correlate

with shorter overall survival (OS) in patients treated

with 5-FU-based chemotherapy. Variations in DNA

topoisomerase II (TOPO II) expression are linked to

resistance against doxorubicin, while high β-tubulin-III

(TUBB3) expression, a target of taxanes, is associated

with resistance to docetaxel and paclitaxel. Additionally,

microtubule-associated protein tau (MAPT) inversely

correlates with paclitaxel sensitivity.

Tyrosine kinase receptors also play a role, with

epidermal growth factor receptor (EGFR) overexpression

common in GC but showing limited clinical efficacy

with anti-EGFR therapies like cetuximab. HER2, targeted

by trastuzumab, shows improved OS in HER2-positive

patients, but resistance correlates with lower HER2 copy

numbers. Vascular endothelial growth factor receptor-2

(VEGFR-2), targeted by ramucirumab and apatinib,

influences survival outcomes, with apatinib

demonstrating effectiveness by reversing MDR1 and

BCRP-mediated resistance. For vascular endothelial

growth factor (VEGF), low expression correlates with

poor outcomes in bevacizumab-treated patients, while

variants in the VEGF pathway (e.g., VEGF-A and VEGF-C)

may predict treatment response. These genetic and

molecular changes underscore the complexity of

chemoresistance mechanisms in GC (16, 24-27).

2.5. Aberrant Over-Activation of DNA Repair Mechanisms

Chemoresistance in GC is heavily influenced by

genetic changes in DNA repair mechanisms, which

enhance tumor cell survival by counteracting drug-

induced damage. Overexpression of ERCC1, a key player

in the nucleotide-excision repair (NER) system, is linked

to poor outcomes in GC patients treated with platinum-

based therapies, with polymorphisms such as rs11615

and rs3212986 further affecting chemotherapy

sensitivity. MicroRNAs such as miR-122 and miR-139-5p

inversely regulate ERCC1 expression, with their

induction restoring cisplatin sensitivity. Similarly,

ERCC2 and ERCC4 overexpression contribute to

resistance, though limited clinical evidence exists for

ERCC4.

In base-excision repair (BER), increased XRCC1

expression is associated with cisplatin resistance, while

its rs25487 polymorphism correlates with poor

outcomes in oxaliplatin-treated patients. Mismatch

repair (MMR) deficiencies, including loss of MLH1, result

in microsatellite instability (MSI), present in up to 30%

of GC cases, and contribute to reduced sensitivity to 5-

fluorouracil (5-FU)-based treatments. Low MSI status,

however, is linked to improved disease-free survival with

adjuvant chemotherapy.

Finally, in homologous recombination (HR), reduced

BRCA1 and BRCA2 expression is observed in GC, though

the BRCA1 rs799917 polymorphism positively impacts

survival in patients treated with taxane and cisplatin

therapies. These genetic alterations underscore the role

of DNA repair systems in mediating chemoresistance in

GC (16, 28-33).

2.6. Imbalance in Apoptotic Regulation

Chemoresistance in GC is strongly influenced by

genetic alterations in pro-apoptotic factors, impairing

drug-induced apoptosis. TP53 mutations, including loss-

of-function and gain-of-function variants such as those

at Arg175, Gly245, and Arg248, result in diminished or

oncogenic p53 activity, leading to enhanced HER2

expression and poorer outcomes with drugs like 5-

fluorouracil (5-FU), paclitaxel, and cisplatin. The

rs1042522 variant of TP53 is linked to worse response

rates to chemotherapy. Loss of CDKN2A expression, due

to promoter hypermethylation, is common in Epstein-

Barr virus-associated GC and correlates with reduced

efficacy of 5-FU therapy. Low expression of intrinsic

pathway proteins, including BAX, BAK, BAD, BIM, and

BLID, further reduces sensitivity to treatments like

docetaxel, cisplatin, and 5-FU. Dysregulation of BIM and

BAD by microRNAs, such as miR-BART20-5p and miR-501,

promotes chemoresistance, while down-regulation of

https://brieflands.com/articles/ijpr-159954
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BLID inactivates caspases 3 and 9, fostering doxorubicin

resistance. Impairments in the extrinsic apoptosis

pathway, such as FADD loss and miR-633 overexpression

targeting FADD, also contribute to resistance. These

genetic changes highlight key apoptotic mechanisms

driving GC chemoresistance (16, 34-37).

Chemoresistance in GC is also driven by genetic and

molecular changes in survival pathways, which inhibit

apoptosis and promote tumor cell resistance.

Hyperactivation of the NF-κB pathway, commonly

observed in GC, up-regulates anti-apoptotic factors like

survivin, BCL-XL, and XIAP, contributing to cisplatin

resistance and acquired chemoresistance. Elevated

survivin serum levels correlate with responses to

chemotherapy in advanced GC. The Wnt/β-catenin

pathway, frequently hyperactive in GC, is exacerbated by

Helicobacter pylori infection, which induces SOX9,

NANOG, and OCT4 expression. Mutations in CTNNB1,

APC, and FBXW7 are linked to poor overall survival (OS)

and progression-free survival (PFS) in chemotherapy-

treated patients. Loss of E-cadherin, which increases β-

catenin levels, is more prevalent in chemoresistant GC.

Hyperactivation of the Hedgehog pathway, influenced

by H. pylori and chemotherapy exposure, up-regulates

GLI1, GLI2, and SHH, contributing to resistance to 5-FU

and doxorubicin. The Notch pathway, up-regulated in

cisplatin-resistant GC, promotes MDR1 and MRP1

expression via lncRNA AK022798, reducing caspase-3 and

caspase-8 activity. High Notch1 expression correlates

with non-responsiveness to 5-FU and cisplatin.

Aberrations in the Hippo pathway lead to nuclear

accumulation of YAP1 and TAZ, linked to poor responses

to adjuvant chemotherapy. Increased activity of

PI3K/AKT and JAK/STAT3 pathways is associated with

reduced sensitivity to cisplatin and trastuzumab. These

molecular changes collectively enhance GC survival and

chemoresistance (16, 38-44).

2.7. Changes in Tumor Cell Microenvironment

Chemoresistance in GC is influenced by genetic and

molecular changes within the tumor

microenvironment, including interactions with stromal

cells, blood vessels, and inflammatory cells. Hypoxia-

inducible factor 1-alpha (HIF-1α), up-regulated in hypoxic

conditions, promotes resistance to platinum derivatives

by altering the expression of miR-27a, miR-421, and long

noncoding RNA (lncRNA) PVT1, while also increasing

MDR1, MRP1, and BCL-2 levels. Stanniocalcin 1 (STC1),

enhanced under hypoxia, contributes to cisplatin

resistance by up-regulating BCL-2 and reducing caspase

activity.

Inflammation-driven factors also play a role. NR4A2,

induced by prostaglandin E2, inhibits apoptosis and

correlates with poor survival in 5-fluorouracil (5-FU)-

treated patients. Cytokines like interleukin (IL)-6, IL-8,

and IL-11 promote resistance through pathways

involving NF-κB, ABCB1, and BCL-2, while IL-33 activates

the JNK pathway to prevent apoptosis. Autocrine

signaling via CCL2 maintains cisplatin resistance by

inactivating autophagy through PI3K-AKT-mTOR

signaling.

In exploring the molecular mechanisms underlying

chemoresistance, the role of autophagy-related genes,

such as FOXO3 and GAPDH, has been highlighted in

various cancers, underscoring the potential for

targeting autophagic pathways to enhance treatment

efficacy. Overexpression of miR-23b-3p reverses

resistance mediated by ATG-12 and HMGB2, while ATG-5

up-regulation is linked to shorter overall survival.

Exosomes further contribute to chemoresistance.

Mesenchymal stem cell-derived exosomes up-regulate

ABC pumps, and tumor-associated macrophage-derived

exosomes transfer miR-21a-5p, enhancing cisplatin

resistance via the PI3K/AKT pathway.

Additionally, metabolic adaptations, such as

glycolysis up-regulation and fatty acid oxidation driven

by lncRNA HCP5, support resistance to 5-FU and

oxaliplatin. These molecular and genetic changes

highlight the complex role of the tumor

microenvironment in GC chemoresistance (15, 45-52).

2.8. Changes in Cellular Phenotypes

Chemoresistance in GC arises from genetic changes

and phenotypic shifts associated with EMT and cancer

stem cells (CSCs). EMT, driven by factors such as

transforming growth factor-beta (TGF-β), hepatocyte

growth factor (HGF), and hypoxia-inducible factor 1-

alpha (HIF-1α), promotes resistance through the up-

regulation of CD168 (HMMR), vimentin, and N-cadherin.

MicroRNA regulation further contributes, with miR-577

enhancing TGF-β signaling and increasing oxaliplatin

resistance, and miR-187 up-regulating ERCC1/4, reducing

cisplatin sensitivity.

Cancer stem cells, marked by surface proteins like

CD44, CD24, CD133, CXCR4, and EpCAM, display intrinsic

chemoresistance. CD44 splicing variants activate

pathways such as Hedgehog, VEGF, and c-Met, driving

https://brieflands.com/articles/ijpr-159954
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resistance to 5-fluorouracil (5-FU), cisplatin, and

anthracyclines. High CD133 expression up-regulates

MDR1 and BCL-2 via the PI3K/AKT pathway, correlating

with shorter overall survival (OS) in cisplatin/5-FU-

treated patients. Additionally, CXCR4 expression in

diffuse-type GC is linked to docetaxel resistance, while

aldehyde dehydrogenase 1 (ALDH1) isoenzymes protect

CSCs from oxidative damage, reducing 5-FU efficacy.

Key EMT regulators, such as LGR5 and DCLK1, promote

resistance by activating pathways like Wnt/β-catenin

and Notch, which enhance stemness and EMT markers,

including SOX2, OCT4, and SNAIL. Prolonged exposure to

oxaliplatin, doxorubicin, or trastuzumab induces EMT

through β-catenin, Fas, and TGF-β-miR-200c-ZEB2

signaling. Resistance is further supported by YAP1-PI3K

activation in trastuzumab-treated cells.

Lastly, CSCs characterized by low CD71 expression or

high side-population cell activity, enriched during 5-FU

treatment, exhibit elevated BCRP and MDR1 levels. These

changes, along with SOX2-mediated ABCG2 expression,

confer resistance to 5-FU, cisplatin, and doxorubicin,

underscoring the role of EMT and CSCs in GC

chemoresistance (16, 42, 53-63).

3. Artificial Intelligence Applications in
Understanding and Predicting Drug Resistance in
Gastric Cancer

Artificial intelligence has transformed GC drug

resistance research by integrating multi-omics data,

revealing disrupted pathways, and identifying

predictive biomarkers. Machine learning (ML) models

help uncover resistance mechanisms, forecast

treatment outcomes, and guide personalized therapies,

offering new solutions to clinical challenges (Figure 2).

3.1. Omics-Driven Insights Using Artificial Intelligence

The AI has significantly transformed omics analysis

in GC by integrating genomic, transcriptomic, and

proteomic data to uncover resistance mechanisms and

biomarkers. Machine learning (ML) and deep learning

(DL) algorithms efficiently analyze large datasets to

reveal complex gene and protein interactions (64-68).

Convolutional neural networks (CNNs) and support

vector machines (SVMs) have been applied to multi-

omics data to identify genetic mutations,

transcriptomic signatures, and proteomic alterations

associated with drug resistance (66, 67, 69, 70). The AI

models analyzing transcriptomic and proteomic data

have identified pathways such as PI3K/AKT and Wnt/β-

catenin, and proteins like BCL-2, MDR1, and β-catenin, as

drivers of cisplatin and 5-fluorouracil (5-FU) resistance

in GC. Genes such as COL1A1, THBS2, and SPP1 have also

been linked to prognosis and programmed death-ligand

1 (PD-L1) expression, suggesting roles in immunotherapy

response (71, 72). Recent studies demonstrate that AI can

effectively identify drug resistance biomarkers in GC.

For instance, one study utilized AI to analyze tumor

genetics and predict treatment response by detecting

mutations linked to replication stress resistance (73).

Another study employed AI on multi-omics data to

reveal how inflammatory processes contribute to GC

onset, offering insights into potential therapeutic

targets (74). These advances underscore AI’s capability to

integrate multi-omics data, aiding in decoding GC drug

resistance and supporting personalized treatment

strategies.

3.2. Artificial Intelligence for Pathway Analysis and
Mechanistic Understanding

The AI has significantly enhanced our understanding

of GC drug resistance by analyzing complex biological

networks. Deep learning (DL) models are instrumental

in identifying disrupted signaling pathways associated

with chemoresistance. For instance, an AI-based

network biology study identified key GC resistance-

related genes and pathways, such as CTNNB1, BCL2, and

TP53, as potential therapeutic targets (75). Furthermore,

AI-based tools have been developed to predict treatment

responses in GC by analyzing digital pathology images.

The DeepRisk network, an AI model, was specifically

designed to assess the tumor microenvironment and

predict chemotherapy benefits for GC patients, thereby

aiding in personalized treatment strategies (76). The

integration of AI with multi-omics data has facilitated

the identification of molecular subtypes and disrupted

pathways in GC, providing insights into resistance

mechanisms and guiding the development of targeted

therapies (77). These advancements underscore AI’s

pivotal role in uncovering complex signaling networks

in GC drug resistance, supporting the development of

targeted therapies.

3.3. Artificial Intelligence in Biomarker Discovery and
Validation

The AI has significantly advanced the discovery of

biomarkers linked to drug resistance in GC, enabling

more personalized treatment through complex data

analysis. The AI-driven analyses have identified specific

https://brieflands.com/articles/ijpr-159954
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Figure 2. Artificial intelligence (AI) applications in understanding and predicting drug resistance in gastric cancer (GC): AI integrates multi-omics data, uncovers resistance
pathways, identifies predictive biomarkers, and models drug sensitivity to optimize therapies in GC (https://BioRender.com/q58w575).

microRNA (miRNA) profiles associated with

chemotherapy resistance in GC, underscoring their

potential as predictive biomarkers (78). Additionally, AI

has been employed to assess the tumor-immune

microenvironment in advanced GC, utilizing a digital

scoring system to predict immunotherapy benefits and

reveal immune-related biomarkers linked to resistance

(79). These advancements highlight AI’s crucial role in

high-throughput biomarker screening, facilitating the

discovery of molecular signatures associated with

therapy resistance in GC and guiding personalized

treatment strategies.

3.4. Artificial Intelligence in Modeling Drug-Response
Relationships

The AI has significantly advanced drug-response

modeling in GC by utilizing machine learning (ML) to

predict sensitivity and resistance to treatments such as

cisplatin, 5-fluorouracil (5-FU), and targeted therapies.

ML models leveraging genomic and transcriptomic data

have demonstrated promise in predicting

chemotherapy responses. For instance, one study

developed a model incorporating 123 omics features

from GC biopsies, achieving an accuracy of 70–80%,

thereby highlighting AI’s role in personalizing

treatment (80). The integration of radiological and

pathological data with AI has also shown promise in

predicting chemotherapy response. A recent study

combined computed tomography (CT) and whole-slide

imaging (WSI) to construct an ML model that effectively

predicted pathological responses in GC patients,

demonstrating strong area under the curve (AUC)

performance and clinical utility (81). These advances

illustrate how AI enhances the understanding of drug

responses in GC, supporting more effective,

personalized treatments.

4. Artificial Intelligence-Driven Approaches to
Precision Therapy

The AI is transforming GC treatment by enabling

personalized therapy. This section explores AI

applications in patient stratification, drug

combinations, adaptive therapies, and clinical

integration (Figure 3).

4.1. Therapeutic Stratification

The AI algorithms analyze complex genomic,

histopathological, and clinical data to match GC

patients with optimal therapies. Deep learning models,

for example, assess HER2 status to identify candidates

for HER2-targeted treatments like trastuzumab. One

study introduced a Multi-Scale Hybrid Vision

Transformer model that accurately classifies GC

https://brieflands.com/articles/ijpr-159954
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Figure 3. Artificial intelligence (AI)-driven approaches to precision therapy in gastric cancer (GC) (https://BioRender.com/uiwfgcj).

pathology, aiding in treatment decisions. Additionally,

AI-driven analysis of digital pathology images has

shown promise in identifying candidates for HER2

inhibitors, enhancing personalized treatment strategies

(82, 83).

4.2. Optimizing Drug Combinations

The AI has emerged as a pivotal tool in optimizing

drug combinations to combat resistance in GC. Machine

learning (ML) models are increasingly employed to

predict synergistic interactions between

chemotherapeutic agents and targeted therapies,

thereby enhancing treatment efficacy. For instance,

deep learning (DL) frameworks have been developed to

predict anticancer synergistic drug combinations by

integrating chemical descriptors of drugs and genomic

data of specific cancer cell lines. These models facilitate

the identification of effective drug pairs tailored to

individual tumor profiles, potentially improving

therapeutic outcomes in GC (84, 85). Additionally, AI-

driven platforms such as GraphSynergy have been

designed to predict synergistic cancer drug

combinations accurately. By analyzing large datasets

encompassing drug properties and cancer cell line

responses, these platforms can identify promising drug

combinations that may overcome resistance

mechanisms in GC (86). While these AI methodologies

have shown promise in various cancer types, their

application specifically to GC is an evolving field.

Ongoing research aims to refine these models to

account for the unique molecular characteristics of GC,

with the goal of developing personalized and effective

combination therapies to overcome drug resistance.

4.3. Adaptive Therapy Design

Real-time AI systems have been developed to enable

dynamic adjustment of treatment strategies based on

patient responses in GC. By continuously analyzing

patient data, including tumor biomarkers and clinical

parameters, AI can recommend modifications to

therapy regimens to address emerging resistance or

adverse effects. For instance, a study by Zhou et al.

introduced an incomplete multimodal data integration

framework for GC (iMD4GC) that addresses challenges

posed by incomplete multimodal data, enabling precise

response prediction and survival analysis. This approach

allows for personalized adjustments in treatment

strategies based on individual patient data, aiming to

maintain treatment efficacy and improve patient

quality of life (87). Additionally, AI has been utilized to

develop personalized cancer treatment strategies that

dynamically adjust treatment to suppress the growth of

treatment-resistant populations. For example, Moffitt

Cancer Center has employed AI to create adaptive

https://brieflands.com/articles/ijpr-159954
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Table 1. Challenges of Artificial Intelligence in Gastric Cancer

Barrier/Challenge Description

Barriers to AI implementation

Data scarcity Limited availability of high-quality datasets for model training and validation in GC research.

Dataset biases
Non-representative patient populations or inconsistent data collection methods lead to biased models that may perform poorly in
real-world clinical settings.

Standardization issues Lack of standardized data collection methods affects the reliability and applicability of AI models.

Black box models Many DL models lack interpretability, making it difficult for clinicians to understand the rationale behind predictions.

Clinical trust and safety
Without transparent reasoning, physicians may be reluctant to trust AI recommendations, impacting patient safety and acceptance
in clinical practice.

Need for explainability Developing interpretable AI models or incorporating explainability features is critical for integration into GC treatment protocols.

Integration challenges Ensuring that technological advancements in AI translate into practical and effective clinical applications.

Bridging research and clinical
practice

Physician trust
Many clinicians are hesitant to rely on AI-driven predictions without clear interpretability and validation in diverse patient
populations.

Regulatory compliance AI-driven decision-support tools must adhere to stringent guidelines set by regulatory agencies such as the FDA and EMA.

Implementation costs Integrating AI into hospital infrastructures requires substantial investment in technology, training, and data management systems.

Education and training
Ongoing education and training programs for oncologists and clinical staff are essential to ensure seamless AI adoption and optimal
utilization in patient care.

Abbreviations: AI, artificial intelligence; GC, gastric cancer.

therapy strategies that adjust treatment plans in real-

time, enhancing the effectiveness of cancer treatments

(88). These advancements highlight the potential of AI

in facilitating real-time, adaptive treatment strategies in

GC, aiming to enhance therapeutic efficacy and patient

outcomes.

4.4. Integration with Clinical Workflows

The AI is increasingly being integrated into clinical

workflows to enhance decision-making in GC

management. AI-driven decision-support tools analyze

patient-specific data to generate evidence-based

recommendations, facilitating personalized treatment

planning. For instance, the development of tools like

GastricAITool aims to assist clinicians in diagnosing and

prognosticating GC, thereby supporting critical

decision-making and enabling personalized strategies

(89). Additionally, AI chatbots have been evaluated for

their effectiveness in improving patient outcomes,

alleviating anxiety, and promoting informed decision-

making among GC patients. A comparative study

assessed the performance of AI chatbots, including Sider

Fusion AI Bot and Perplexity AI, in providing support

and information to young adults diagnosed with GC,

highlighting their potential to enhance patient

engagement and outcomes (90). The integration of AI

into clinical workflows aims to enhance decision-

making efficiency and improve patient outcomes in GC

management. By providing clinicians with advanced

tools for early diagnosis, prediction of adverse

outcomes, and personalized treatment

recommendations, AI has the potential to significantly

improve the quality of care for GC patients.

5. Challenges and Opportunities of Artificial
Intelligence

There are a number of challenges and opportunities

related to the application of AI. Table 1 summarizes these

points, and in the following section, each challenge and

opportunity is discussed in detail.

5.1. Barriers to Artificial Intelligence Implementation

Implementing AI in GC treatment faces several

challenges, notably data-related issues and the

interpretability of AI models. The AI models require

extensive, high-quality datasets to make accurate

predictions. In GC research, data scarcity can hinder

model training and validation. Additionally, biases in

datasets — stemming from non-representative patient

populations or inconsistent data collection methods —

can lead to models that perform well in controlled

settings but poorly in real-world clinical environments.

Addressing these issues necessitates standardized data

collection and efforts to compile diverse,

comprehensive datasets (91). To overcome data

limitations and bias in AI-driven GC research, several

https://brieflands.com/articles/ijpr-159954
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strategies have been adopted (92). Transfer learning

allows models trained on large datasets from other

cancers to be adapted for GC, reducing the need for

extensive labeled data. Federated learning (FL) enables

institutions to collaboratively train models without

sharing patient data, improving generalizability and

privacy. Additionally, synthetic data generation using

generative adversarial networks (GANs) and variational

autoencoders (VAEs) augments datasets by producing

realistic samples, helping to balance classes and

improve model robustness. These approaches

collectively enhance the accuracy and clinical relevance

of AI models in GC (92-94). Additionally, many AI

models, particularly those based on DL, operate as

"black boxes," providing predictions without

transparent reasoning. This lack of interpretability

poses a significant barrier in clinical settings, where

understanding the rationale behind a recommendation

is crucial for physician trust and patient safety (95, 96).

Developing interpretable AI models or incorporating

explainability features is essential to facilitate their

integration into GC treatment protocols. Overcoming

these challenges is vital for the successful application of

AI in GC therapy, ensuring that technological

advancements translate into tangible clinical benefits.

A key challenge in applying AI to GC research is the

"black box" nature of complex models, which often lack

interpretability. This makes it difficult for clinicians to

trust AI-generated predictions. Explainable AI (XAI)

techniques help address this by improving transparency

and enabling a clearer understanding of model

decisions, supporting more informed clinical use (95,

97). Various XAI methods have been developed to

improve the transparency of AI models in oncology.

SHAP (Shapley Additive Explanations) clarifies how

input features like biomarkers influence predictions,

while LIME (Local Interpretable Model-agnostic

Explanations) simplifies model behavior by testing how

small input changes affect outcomes. Attention

mechanisms in deep learning (DL) also help by

pinpointing important areas in medical images or

genomic data, enhancing clinical interpretability (98,

99). Incorporating explainable AI into GC research

enhances model transparency, helping oncologists

better trust and apply these tools in practice. By making

predictions more interpretable, XAI bridges the gap

between complex algorithms and clinical decision-

making. Continued focus on explainability will ensure

AI delivers both accurate and meaningful insights for

personalized cancer care.

5.2. Bridging Research and Clinical Practice

Addressing these challenges necessitates

interdisciplinary collaboration between AI researchers

and oncologists. Such partnerships can ensure that AI

models are developed with clinical relevance and are

tailored to the specific needs of GC treatment. For

example, a collaboration between the Institute of

Cancer Research and clinical experts led to the

development of an AI test capable of predicting effective

cancer drug combinations, demonstrating the potential

of interdisciplinary efforts (100). Furthermore,

integrating AI into clinical workflows requires joint

efforts to validate AI tools, establish guidelines, and

provide training for healthcare providers. A consensus

statement by the American Society for Gastrointestinal

Endoscopy highlighted the importance of such

collaborative efforts in understanding and

implementing AI in clinical practice (101).

In conclusion, while AI offers promising avenues for

advancing GC treatment, overcoming implementation

barriers and fostering interdisciplinary collaboration

are crucial steps toward realizing its full potential in

clinical settings. Despite its promise in GC treatment, AI

faces several barriers to clinical adoption. Many

clinicians remain cautious due to limited model

transparency and lack of validation across diverse

patient groups (102). Explainable AI methods like SHAP

and LIME can help build trust by clarifying predictions

(103). Regulatory compliance also poses a challenge, as

AI tools must meet strict Food and Drug Administration

(FDA) and European Medicines Agency (EMA) guidelines

(104). Standardized validation protocols are essential for

broader clinical acceptance (105). Implementation costs

— covering infrastructure, training, and data

management — are another hurdle (106), but cost-

effectiveness analyses may support long-term adoption.

Finally, ongoing education and training for clinical

teams are key to effective AI integration (107).

Addressing these challenges will improve AI uptake and

patient outcomes in GC care.

5.3. Future Potential of Artificial Intelligence in Precision
Oncology

Integrating AI with precision oncology offers new

insights into drug resistance in GC. Advances in single-

cell and spatial transcriptomics reveal tumor
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heterogeneity and cell interactions. The AI models using

these data can better predict treatment responses and

resistance, as shown in studies analyzing GC with

peritoneal metastasis (108). Spatial transcriptomics has

enabled mapping of the tumor microenvironment in

GC, offering spatial context to gene expression. When

combined with AI, it helps identify novel biomarkers

and therapeutic targets, improving treatment precision

(109). Developing effective AI models requires diverse

datasets, but privacy concerns often hinder data

sharing. Federated learning (FL) addresses this by

allowing model training across institutions without

centralizing data. In GC, it has been used to identify

high-risk patients for recurrence, showing promise in

improving predictive accuracy (94). Additionally,

integrating generative AI with FL has shown promise in

privacy-preserved sequence-based stomach

adenocarcinoma detection, further underscoring the

applicability of FL in GC research (110).

In conclusion, integrating spatial and single-cell

transcriptomics with AI and FL represents a cutting-edge

approach in GC precision oncology. These advances offer

deeper insights into drug resistance and support the

development of personalized therapies to enhance

patient outcomes.

5.4. Clinical Validation of Artificial Intelligence in Gastric
Cancer

Although AI holds great potential for identifying

drug resistance in GC, clinical validation is essential for

real-world use. Several studies have shown that AI

models can effectively predict therapy response and

guide treatment decisions. However, integrating these

tools into routine care remains challenging. Clinical

case studies are key to confirming their reliability in

personalized treatment. For example, Zhang et al.

developed a deep learning model using CT images to

predict resistance to neoadjuvant chemotherapy in

locally advanced GC, achieving AUCs of 0.808, 0.755, and

0.752 in validation cohorts (111). Metabolomic profiling

has been instrumental in exploring chemotherapy

resistance in GC. Studies have identified metabolic shifts

in GC cells exposed to 5-FU and trastuzumab, revealing

potential biomarkers of resistance (112, 113). While not AI-

driven, these findings support future development of AI

models using metabolomic data to predict treatment

outcomes. Additionally, a machine learning study

identified a 10-metabolite signature for GC diagnosis

and risk stratification, offering insights into potential

resistance to standard chemotherapy (114). Advances in

AI are enhancing the analysis of the TME, offering

insights into drug resistance and outcomes in GC. Chen

et al. developed an AI method linking TME features to

prognosis (115). Similarly, the PLATFORM trial

(NCT02678182) used AI with multiplex

immunofluorescence images to distinguish responders

from non-responders to chemotherapy and immune

checkpoint inhibitors, highlighting markers like

FOXP3+ and CD8+PD1+ T cells (79). These findings show

AI’s potential to personalize therapy and guide clinical

decisions in GC.

5.5. Ethical and Legal Challenges in Artificial Intelligence-
Driven Gastric Cancer Treatment

While AI offers promising tools for managing drug

resistance in GC, its clinical use raises important ethical

and legal concerns. A key issue is bias in models trained

on incomplete or non-representative data, which can

lead to unfair treatment recommendations and worsen

healthcare disparities. Ensuring fairness requires

diverse, high-quality datasets and the use of bias-

detection methods during model development (116).

Patient privacy and data security are essential in AI-

driven GC treatment. Although AI relies on large patient

datasets, handling this sensitive information poses risks

of misuse. Compliance with regulations like HIPAA and

GDPR is critical for protecting confidentiality. Federated

learning offers a solution by enabling model training

across institutions without sharing raw data, thus

minimizing privacy concerns (117). Legal liability is a key

concern in AI-driven healthcare. When an AI tool gives a

wrong treatment recommendation, it's unclear whether

the physician, institution, or developer is accountable.

Unlike traditional tools, AI systems evolve with new

data, complicating oversight. Clear accountability and

legal frameworks are essential for safe clinical use (118).

The AI regulatory pathways differ across regions,

leading to a fragmented landscape. Although agencies

such as the FDA and EMA are developing guidelines,

standardization remains limited. The absence of unified

validation protocols complicates approval and delays

clinical use. Establishing global frameworks is essential

for integrating AI into oncology (105). Addressing these

ethical and legal challenges will enable safe, fair, and

accountable use of AI in GC treatment, ensuring patient

privacy and equity in clinical decisions.

6. Future Directions
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The AI is revolutionizing precision therapy in GC by

enhancing therapeutic stratification, optimizing drug

combinations, designing adaptive therapies, and

integrating with clinical workflows.

6.1. Next-Generation Artificial Intelligence Models

Integrating explainable AI (XAI) into GC research

helps overcome the "black box" issue, increasing

clinician trust. By clarifying AI decisions, XAI supports

better understanding and validation. A study on

gastrointestinal cancers shows its value in improving

diagnosis and treatment planning (119). Artificial

intelligence models are being developed to predict how

drug resistance evolves in GC by analyzing tumor

genetics and cell responses. Tools like PERCEPTION use

single-cell transcriptomics to anticipate treatment

outcomes and guide personalized therapy (8). Next-

generation AI models offer promise for improving GC

treatment by predicting resistance patterns and

enabling tailored interventions.

6.2. Integrating Multi-Omics with Real-Time Patient Data

Combining static genomic insights with dynamic

clinical data through AI enables a comprehensive

understanding of drug resistance mechanisms in GC.

Integrative models that analyze genomic,

transcriptomic, and proteomic data alongside real-time

patient information can identify biomarkers predictive

of resistance and monitor treatment responses. Such

approaches facilitate the development of adaptive

therapies tailored to the evolving molecular landscape

of individual patients' tumors.

6.3. Advancing Drug Discovery with Artificial Intelligence

Advancements in AI are significantly enhancing drug

discovery efforts, particularly in identifying novel

compounds that target resistance pathways in GC. By

modeling complex biological interactions, AI can design

drugs that specifically inhibit mechanisms underlying

therapeutic resistance. For instance, AI-driven platforms

have been developed to design multi-target drugs,

which can simultaneously disrupt multiple pathways

involved in cancer progression and resistance.

Additionally, AI models have been employed to discover

potential anti-cancer drug targets through the analysis

of synthetic lethality, offering new avenues for

treatment development. These AI-driven approaches

hold promise for accelerating the development of

effective therapies against drug-resistant GC (120, 121).

7. Conclusions

Artificial intelligence is revolutionizing GC treatment

by providing innovative approaches to address drug

resistance. It integrates multi-omics data to identify

biomarkers, analyze disrupted pathways, and predict

resistance mechanisms. Machine learning (ML) models

reveal how GC cells adapt to therapies, while AI-driven

drug discovery and real-time adaptive therapy systems

enhance treatment precision. Future advancements in

explainable AI, federated learning, and single-cell

transcriptomics promise to bridge research and clinical

practice. By overcoming challenges like data quality and

model interpretability, AI is set to deliver personalized,

adaptive treatments, improving outcomes and quality

of life for GC patients.
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