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Abstract

Background: Antimicrobial resistance (AMR) in clinical and environmental Acinetobacter baumannii strains has been

recognized as a worldwide challenge for public health. Artificial neural networks (ANNs), an artificial intelligence (AI)

algorithm, is a computational model for understanding the complex relationship between input and output data. The ANNs

model can support authorities in making proper prescriptions in a significantly shorter time frame, facilitating a more accurate

treatment procedure while saving budget and required medical staff.

Objectives: The present study aimed to investigate whether AI can improve the detection of AMR A. baumannii isolates under

experimental conditions.

Methods: Clinical and environmental A. baumannii isolates were collected from hospitalized patients and the perimeter of

hospitals. The minimum inhibitory concentrations (MICs) of isolates to antibiotics and biocides effective doses were

determined using the microdilution broth test according to CLSI-2021 guidelines. The ANNs model was trained using a portion

of in vitro datasets (i.e., train set), taking into account different characteristics of clinical/environmental isolates recorded for

each isolate in the dataset. Finally, the ANNs model was used to predict the AMR class and biocides dose class of the laboratory

dataset (i.e., test set), and results were compared with existing data to determine the accuracy of ANNs model predictions.

Results: On average, 35% of A. baumannii strains were isolated from clinical/environmental samples. The minimum sensitivity

level [i.e., R class of ciprofloxacin (CIP5) and ticarcillin (TIC75)] was observed in 70% of clinical A. baumannii isolates, and the most

effective dose of BZK and BZT biocides against environmental isolates was 256 µg/mL, while it was 128 µg/mL for CLX. Results

showed that the prevalence of A. baumannii isolates resistant to antibiotics and biocides is high not only in hospitals but also in

the environment, and the ANNs model can predict the classification of the remaining test dataset with approximately 90%

accuracy.

Conclusions: This measure can contribute to the prevention of the overuse and incorrect use of antimicrobial agents to

combat rising resistance rates of A. baumannii by focusing on a wider variety of potentially effective parameters on the required

dose of antimicrobial agents. This model can be practically used in hospitals as part of treatment protocols, highlighting the

cheap and fast diagnosis and prescription.
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1. Background

Acinetobacter has more than 50 types, most of which

are environmental and non-pathogenic. Acinetobacter

baumannii is an opportunistic pathogen that can cause

both community-acquired and nosocomial infections,

especially in intensive care unit patients (1). Most
nosocomial infection transmission occurs through

direct contact with hospital staff and equipment,

highlighting the importance of factors such as proper
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disinfection of medical equipment, personnel

awareness of infection risks, and the type of disinfectant

agents used (e.g., biocides). Until three decades ago, A.
baumannii infections were effectively treated with

conventional antibiotics, but recently, due to the
emergence of multidrug-resistant (MDR) strains,

treatment of these infections has become challenging.

According to reports from the World Health
Organization (WHO), A. baumannii is one of the most

serious organisms that evade the antibacterial effects of
medicines through different mechanisms, such as efflux

pumps and enzymatic degradation of drugs (2). The

multidrug resistance of A. baumannii creates additional

costs and pressure by prolonging the hospitalization

period and has become a challenge for health systems
worldwide, including in Iran. Another concern is the

high resistance of A. baumannii to biocides. If high
resistance of a type of bacteria to biocides becomes

prevalent and coexists with antibacterial resistance, it

can contribute to the development of new resistant
microorganisms in that or other bacterial families

through the transfer of resistant genes.

Controlling antimicrobial resistance (AMR) of A.

baumannii, in addition to re-evaluating the effectiveness

of common antimicrobial agents (such as antibiotics or

biocides), requires investigating different

characteristics of the source of A. baumannii (patient

characteristics, environmental parameters, etc.) (3-5).

One main problem in the treatment of bacteria-caused

infections is the lengthy routine procedures for

identifying the bacteria type or the expensive, time-

consuming, and complicated polymerase chain reaction

(PCR) tests that are rarely employed in clinics.

Compared with traditional and PCR tests, AI-based

approaches are not only time-saving and cost-effective

but also facilitate practical research in the microbiology

field (6). Past studies have shown that in the absence of

traditional clinical techniques and instruments for

distinguishing types of bacteria, AI can recognize the

type of bacteria with a fast and automatic mathematical

procedure (7). Recently, AI has demonstrated its

significance in identifying and controlling AMR (8).

Artificial neural networks (ANNs), as a type of AI

algorithm, have shown reasonable performance in

predicting the minimum inhibitory concentration

(MIC) of antimicrobial peptides (AMPs) against A.
baumannii isolates, even with limited data (9). This can

be attributed to the robust capability of ANNs models in

capturing complex non-linear patterns and thereby

presenting better performance.

In many emergency medical cases where medical

staff does not have enough time to wait for bacterial

culture analysis to timely treat the bacterial infection of

a patient, ANNs can be a useful tool for reducing the

required time to prescribe antimicrobial agents,
improving diagnostic and treatment accuracy, and

decreasing the cost of medication. The ANNs models can
support physicians in making the decision process more

accurate and easier (10, 11). In other words, the

application of ANNs models can be a basis for
developing new strategies aimed at controlling

infections. This model can contribute to the
identification of potential antimicrobial molecules,

accelerate the identification of AMR class, and optimize

antibiotic compositions. Several past studies have used

AI in the context of antibiotic resistance (10, 12).

However, studies applying ANNs for classifying the AMR
of A. baumannii isolates collected from patients in

hospital wards (e.g., clinical isolates) and for predicting
effective biocide doses to disinfect isolates from hospital

environments (e.g., environmental isolates) are limited.

It should be noted that the ANNs model was selected for
this study framework considering features such as the

nature of the data, dataset size, model complexity, and
computational efficiency.

2. Objectives

The present study aimed to investigate whether

artificial intelligence (AI) can improve the detection of

AMR A. baumannii isolates in experimental conditions.

3. Methods

3.1. Bacterial Isolation Procedures

The initial step in implementing AI approaches, such

as ANNs models, involves the collection and preparation

of the necessary dataset. In this study, 103 clinical and 73

environmental isolates were collected from hospitalized

patients and various locations across seven hospitals in

Golestan province, northern Iran, over a one-year period

(2021 - 2022). The samples were selected randomly using

the convenience sampling method. The sample size was

determined at a 95% confidence level using the

following formula, where P1 represents the number of

samples suspected of infection or pollution, and P2

denotes the number of samples with a positive test (α =

0.05, β = 0.10) (Equation 1):

n =

(Z1− + Z1−β)
2

×(P1(1 − P1)+P2(1 − P2))a
2

(P1 − P2)2
(1)
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Wound and burn specimens were collected by

trained nursing personnel using a sterile wet cotton

swab or a 3 mm punch weighing 0.03 grams.

Respiratory and spinal fluid samples were obtained by a

specialist physician and transferred to the laboratory.
Environmental samples were collected at ambient

temperature using sterile swabs from surfaces such as

park tables, swimming pools, wheelchairs (4 × 4), and

soil. Subsequently, the samples were homogenized

using a homogenizer (BioMaster-Stomacher, Seward,
England), and 0.1 cc of the resulting suspension was

cultured on CHROMagar Acinetobacter (CMA, Sigma-

Aldrich, USA).

Following phenotypic tests based on standard

microbiological and biochemical methods (4),

molecular identification and final confirmation of A.

baumannii isolates were performed. Genomic DNA was

extracted using the boiling method, and PCR was

conducted to identify the blaOXA-51 gene using forward

and reverse primers: F: 5'-TAATGCTTTGATCGGCCTTG-3'

and R: 5'-TGGATTGCACTTCATCTTGG-3' (13, 14). After DNA

extraction, it was crucial to ensure the absence of

contamination by proteins or organic solvents. Once

DNA purity was confirmed, a Control Mix, including

primers and a probe, was added to the reaction mix

before amplification. The PCR reaction was carried out

in a final volume of 25 µL, consisting of 1 µL DNA sample,

1 µL of each primer, 12 µL of 2X Master Mix (containing 20

μM dNTP and 1.5 μM MgCl2), and 11 µL of distilled water.

The reaction was performed in a thermocycler
(Eppendorf, Germany) with the following cycling

conditions: Initial denaturation at 94°C for 5 minutes,
followed by 30 cycles of denaturation at 94°C for 60

seconds, annealing at 55°C for 1 minute, extension at

72°C for 1 minute, and a final extension at 72°C for 10

minutes. The resulting PCR products were then

electrophoresed on a 1.5% agarose gel. The detection of

353 bp fragments confirmed the presence of isolates

(Figure 1). Pseudomonas aeruginosa ATCC 27853 was

considered as negative control and A. baumannii ATCC

19606 as positive control.

Clinical characteristics, including age, gender,

sample source (e.g., burn wound, spinal fluid, sputum,

lung secretions, urine, tissue biopsy), hospital sampling

department (e.g., ICU, infectious, neurology, obstetrics,

and gynecology), and the type of antibiotic used, were

collected. Environmental characteristics included the

antimicrobial agent used (biocide/antibiotic), sampling

location (e.g., park table, yard soil, yard pool,

wheelchair), material of the sample environment (e.g.,

metal, plastic, concrete, rubber, soil, water), infection

contact risk (i.e., high to very high, moderate to high,

low to moderate), and sampling season (i.e., summer,

fall, winter, spring).

To determine the minimum inhibitory

concentrations (MICs) of antibiotics — ciprofloxacin

(CIP5), cefepime (FEP30), meropenem (MEM10),

ticarcillin-clavulanic acid (TCC75 + 10), colistin (CS50),

amikacin (AN30), doxycycline (DO30), gemifloxacin

(GEM5), trimethoprim sulfamethoxazole (SXT1.25 +

23.75), ticarcillin (TIC75) — and biocides — benzalkonium

chloride (BZK), benzethonium chloride (BZT), and

chlorhexidine digluconate (CLX) — the broth

microdilution method was used according to the CLSI-

2021 standard tables guide (15). In brief, initial stock and

two-fold serial dilutions of antibiotics and biocides were

prepared, and 100 μL was inoculated into each well. The

antibacterial effect of antimicrobials on the growth of

all A. baumannii isolates after 24 hours was determined

using optical density (OD560) and a final concentration

of 106 - 107 CFU/mL. Pseudomonas aeruginosa ATCC27853
and Escherichia coli ATCC 25922 were used as controls for

the susceptibility tests.

Clinical variables were assumed as input features of

isolates, and the AMR class (i.e., R, I, S) of each isolate

according to the MIC was considered the target value in

the dataset. Similarly, environmental variables were

assumed as input features, and the MIC class (i.e., H, M,

L) was considered the target value. Since sampling

locations had various access conditions for patients,

medical staff, and hospital visitors, the qualitative

parameter of infection contact risk was defined with

respect to the number of people using the place within

the sampling time slot. The weight of hospital visitors

was considered as 1, while the weight of medical staff

and patients was considered as 2 and 3, respectively. The

weighted average was extracted, and if it was 2 or

greater, the infection contact risk was assumed to be

high to very high; if it was between 1.5 and 2, the risk was

assumed to be moderate to high; and if it was between 1

and 1.5, the risk was assumed to be low to moderate. This

procedure was repeated on three different days, and the

average value of these days was used to determine the

infection contact risk. Among the 30 environmental

isolates, 50% had a high to very high infection contact

risk, while 36.7% and 13.3% had moderate to high and low

to moderate contact risks, respectively.

In the input features, only age and hospitalization

period had a numeric nature, while others were

categorical. With this data arrangement, there were six

input and one output column for the ANNs model

developed for both clinical and environmental datasets.

Among the collected clinical isolates, the majority

belonged to females, with 17 isolates (57%), and

https://brieflands.com/articles/mejrh-160613
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Figure 1. Polymerase chain reaction (PCR) amplification of the blaOXA-51 gene

considering age, the majority belonged to the over 60

years old group, with 14 isolates (46.5%). Regarding the

sample source and hospital sampling ward, most
isolates belonged to the infectious and burn wound

departments, with 63.5% and 33.5%, respectively. As for
environmental isolates, the majority were extracted

from park tables, with 16 (53.5%) samples, and most of

these isolates were collected in spring, with 11 (36.5%)
samples. Table 1 shows details of the input data features

used for developing the ANNs model in this study.

3.2. Developing Artificial Neural Networks Model

The ANNs are computational models inspired by the
structure and function of biological neural networks in

the human brain (16). They consist of interconnected
nodes, or neurons, arranged in layers: An input layer,

one or more hidden layers, and an output layer (17).

Neurons receive input signals, apply an activation
function to process them, and transmit the result to

neurons in subsequent layers, as illustrated in Figure 2.

In ANNs, many such structures, as shown in Figure 2,

can be interconnected to form layers. Consequently, the

output of a neuron j in layer l is computed as follows

(Equation 2):

- z  j
(l)is the weighted sum of inputs to neuron j in

layer l.

- w  ij
(l)is the weight of the connection between

neuron i in layer l - 1 and neuron j in layer l.

- a i
(l-1) is the output of neuron i in layer l -1.

- b j
(l) is the bias term for neuron j in layer.

The output a  j
(l) of neuron j in layer l is obtained by

applying an activation function f to the weighted sum of

a  j
(l) = f (z  j

(l)). There are such common activation

functions as Sigmoid, Hyperbolic tangent (tanh),

Rectified Linear Unit (ReLU), and Softmax (19).

During training, the network learns by adjusting the

weights and biases to minimize a predefined loss

function, which measures the difference between the

predicted output and the actual output of the data. The

loss function is typically defined as the difference

between the predicted output and the true output y,

often supplemented with regularization terms to

prevent overfitting. To mitigate overfitting,

regularization techniques such as L1 and L2

regularization, dropout, and batch normalization are

utilized (19). These methods help ANNs generalize better

to unseen data by reducing model complexity or

introducing noise during the training phase. The

weights are updated iteratively using an optimization

algorithm such as gradient descent. This process of

updating the weights along with biases based on the

gradient of the loss function is known as

backpropagation. Activation functions introduce non-

z
(l)
j

= ∑
n(l−1)

i=1
w

(l)
ij

. a
(l−1)
i

+ b
(l)
j

  (2)

ŷ  
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Table 1. Details of Used Data for Building Artificial Neural Networks Model for Clinical and Environmental Isolates

Names Value Ranges

Input features  a

Sex 0, 1 means male, female

Age (y) 31 - 78

Sample source Burn wound, spinal fluid, sputum, pulmonary secretions, urine, tissue biopsy

Sampling place ICU, infectious department , neurology, obstetrics and gynecology

Hospitalization period (d) 2 - 13

Antibiotic name CIP5, FEP30, MEM10, ticarcilin-clavunic acid, CS50, AN30, doxcycycline, GEM5, trimethoprim sulfametha xazole, tikarcilin

Target variables  a

Response to antibiotic 3 categories: R, I, S (resistant, intermediate, sensitive)

Input features  b

Name of biocide BZK, BZT, CLX, CIP5, FEP30, MEM10, ticarcilin-clavunic acid, CS50, AN30, doxcycycline, GEM5, trimethoprim sulfametha xazole, tikarcilin

Category Antibiotic, biocide

Sample source Park table, yard soil, yard pool, wheelchair

Sample environment Metal, plastic, concrete, rubber, soil, water

Infection contact risk 2 = < high-very high; 1.5 = < moderate-high < 2; 1 = < low-moderate < 1.5

Sampling season Winter, fall, spring, summer

Target variables  b

Biocide/antibiotic dose 3 categories: H, M, L (high, moderate, low)

Abbreviations: CIP5, ciprofloxacin; FEP30, cefepime; MEM10, meropenem; CS50, colistin; AN30, amikacin; GEM5 gemifloxacin.

a Clinical isolates.

b Environmental isolates.

Figure 2. Function of a single neuron in artificial neural networks (ANNs) model (18)

linearity to ANNs, enabling them to learn complex

patterns and relationships in data.

With respect to the already arranged datasets

corresponding to the categories of clinical and

environmental isolates, where three distinct classes

have been determined for each category, the ANNs

model was developed to predict these three distinct

classes. The ANNs model developed for the clinical

dataset predicts the response class of various antibiotics

(i.e., R, I and S) to these isolates according to their

characteristics. Likewise, the implemented ANNs model

for the environmental isolates dataset classifies the

effective biocide dose into three classes (i.e., H, M, and L)

https://brieflands.com/articles/mejrh-160613
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Figure 3. Conceptual architecture of the artificial neural networks (ANNs) models for A, clinical isolates; and B, environmental isolates

to disinfect the isolates. Moreover, the first dataset

comprises six features, while the second one

encompasses seventeen features, which must be

considered as the input layer of the ANNs models. The

architecture of the ANNs models is akin to the

conceptual framework illustrated in Figure 3.

Although environmental isolates initially comprised

six input features, the corresponding conceptual ANNs

model encompasses 17 features at the input layer, as

shown in Figure 3. An empirical approach revealed that

employing a traditional ANNs model with a six-neuron

input layer yields inadequate accuracy scores, primarily

due to all six features being categorical. Consequently,

dummy variables were employed. A dummy variable,

also referred to as an indicator variable, is a binary

variable used mostly in statistical analysis to represent

categorical data, taking the values 0 or 1 to signify the

absence or presence of a particular category or

characteristic. Dummy variables are instrumental in

effectively incorporating categorical predictors into

models (20). For instance, regarding the input feature of

biocide name in the original environmental dataset,

each of the 13 existing values was represented using a

unique set of four-bit predictors. Hence, instead of a

categorical feature for biocide name, a set of four new

numerical features was introduced. This technique was

applied to other categorical features of the

environmental dataset, increasing the six categorical

input features to 17 numeric features.

The determination of an optimal architecture for

ANNs models is a critical aspect of developing predictive

models in various domains. When designing an ANNs,

researchers often face the challenge of balancing model

complexity with performance. This necessitates careful

consideration of the number of layers and neurons in

each layer to ensure that the model effectively captures

the underlying patterns in the data while avoiding

overfitting (21). One approach for deciding on the

architecture of an ANNs model is to commence with a

simple structure and gradually increase complexity as

needed. This iterative process involves experimentation

with different configurations of layers and neurons in

each layer while monitoring the model’s performance

(22).

To calibrate the two ANNs models and determine

their well-balanced architecture, a fine-tuning

procedure was employed as a general approach, as

follows:

- Defining metrics: Apart from several metrics such as

accuracy, precision, recall, and F1-score, the primary

metric considered was the accuracy of the models.

- Splitting the datasets: Each dataset was divided into

two subsets: A training set and a test set. The training

subset consists of 70% of the entire dataset, while the

remaining 30% is used as the test set.

- Initializing model: In this step, the architectures of

the models are defined, including the number of hidden

layers, neurons per layer, and activation functions.

https://brieflands.com/articles/mejrh-160613
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Figure 4. Number of hidden layers versus accuracy score of artificial neural networks (ANNs) models during calibration process corresponding to A, environmental isolates; B,
clinical isolates.

- Training the models: The training data is used to

train the models. During training, the models learn to

minimize the difference between their predictions and

the actual target values.

- Evaluating performance of the models: Based on the

chosen metric, which was accuracy, the models’

performance was assessed using the test subsets. The

architecture or hyperparameters of the models should

be adjusted according to the results as needed in an

iterative manner.

- Finalizing the models: Once satisfied with the

performance on the training and test subsets, the

models can be considered final.

The calibration approach mentioned above was

employed to determine the architecture of the ANNs in

terms of the number of hidden layers and the number

of neurons in each layer. Accordingly, Figure 4 illustrates

the number of hidden layers versus the accuracy of

ANNs models for both clinical and environmental

isolates.

As shown in Figure 4A, two hidden layers represent

the optimal point to achieve the best accuracy score for

the ANNs model developed for environmental isolates,

while the optimal number of hidden layers for the ANNs

model for clinical isolates could be any number equal to

or greater than five, based on Figure 4B. Although six

hidden layers result in slightly better accuracy for

clinical isolates, it was decided to use five hidden layers

to reduce complexity and computation time without

sacrificing significant accuracy.

The same approach was employed to determine the

optimal number of neurons for each layer of both ANNs

models. In this way, the number of utilized neurons in

the first hidden layer of the developed ANNs model for

environmental isolates was determined to be 34, as

shown in Figure 5A. The same approach was employed

for the second hidden layer, leading to the choice of

eight neurons. Similarly, for the ANNs model of clinical

isolates, the number of neurons utilized in each of the

five hidden layers was determined. According to Figure

5B, the number 18 appeared to be a suitable choice for

the number of neurons in the first hidden layer of this

model. While selecting any number greater than 18

seems to yield a slightly more accurate result, the desire

to avoid complexity in the model compelled us to opt

for 18 as the optimal number of neurons in the first

hidden layer. Following the same procedure described

for the first hidden layer, the numbers 30, 18, 12, and 6

were identified as suitable numbers of neurons for the

respective subsequent hidden layers.

Figures 6 and 7 depict detailed versions of the

conceptual ANNs models developed for environmental

and clinical isolates, respectively, using the training

dataset. As seen in Figure 6, the developed ANNs model

for environmental isolates had two hidden layers,

containing 34 and 8 neurons for the first and second

hidden layers, respectively. In comparison, the ANNs

model for antibiotics is more complex and consists of

https://brieflands.com/articles/mejrh-160613
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Figure 5. Number of neurons in the first hidden layer versus accuracy score of developed Artificial neural networks (ANNs) models during the calibration process for A,
environmental isolates; B, clinical isolates.

five hidden layers, encompassing 18, 30, 18, 12, and 6

neurons, consecutively. Table 2 summarizes the

specifications of the software, libraries, operating

system, and hardware used for implementing the ANNs

model.

4. Results

In the experimental assay, 30 out of 103 clinical

isolates (29% of clinical isolates) and 30 out of 73

environmental isolates (41% of environmental isolates)

were identified as A. baumannii. In the clinical

laboratory, the MIC of clinical isolates was obtained

using 10 types of antibiotics to assess the level of AMR.

Three classes of AMR — sensitive (S), intermediate (I),

and resistant (R) — were determined based on the

measured MIC and the interpretation criteria

established by the producer company of the applied

antibiotics. For environmental isolates, the MIC of BZK

and BZT biocides was measured in the range of 1024 to 2

μg/mL, and three classes of MIC were determined

similarly to the clinical isolates. These classes include

high (H) for the highest MIC value of 512 μg/mL,

moderate (M) for the second highest value of 256 μg/mL,

and low (L) for values of 128 μg/mL or smaller. For CLX,

values for H, M, and L classes were 1000, 500, and 250,

respectively. In this way, 300 MIC data points for AMR of

clinical isolates and 90 MIC data points for

environmental isolates were set.

Because one of the main targets of this study was

assessing the capability of ANNs for predicting the

correct MIC class for isolates, while limited data of

environmental isolates (90) was available using three

types of biocides, antibiotics were also used on

environmental isolates, thereby providing 300

additional MIC data points. When antibiotics were used

as disinfecting agents for environmental isolates, MIC

classes including S, I and R were renamed as L, M, and R

classes as previously defined. Thus, the total number of

MIC data points increased to 390 for environmental

isolates.

During the laboratory tests, it was found that the

minimum sensitivity level (R class of AMR) of clinical A.

baumannii isolates was against CIP5 and TIC75, observed

in 70% of isolates when both antibiotics were applied.

Conversely, the maximum level of sensitivity (S class of

AMR) was against CS50, observed in 60% of isolates, with

the second maximum level of sensitivity against GEM5

and trimethoprim-sulfamethoxazole in 53.5% of isolates

for both. Generally, 20% of clinical isolates showed the

MDR phenotype, and 73.5% represented the extensively

drug-resistant (XDR) phenotype (Figure 8).

Regarding the environmental isolates, the minimum

sensitivity level (H class) was against DO30, observed in

76.5% of isolates. The maximum sensitivity level (L) was

against CS50 and trimethoprim-sulfamethoxazole,

observed in 47% of isolates when each of these

antibiotics was employed. Additionally, the most

effective biocide was CLX, with 43% of isolates requiring

the L class of MIC. A total of 26.5% and 56.5% of

environmental isolates showed MDR and XDR resistance
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Figure 6. The final architecture of artificial neural networks (ANNs) model developed for environmental isolates

phenotypes, respectively, against these two effective

antibiotics (CS50 and trimethoprim-sulfamethoxazole).

It was also observed that the most effective dose of BZK

and BZT biocides against environmental isolates was 256

μg/mL, while it was 128 μg/mL for CLX. Figure 8

illustrates the distribution of MIC classes for different

antibiotics and biocide/antibiotic applications to

clinical and environmental isolates, respectively.

After model calibration over the training dataset of

clinical and environmental isolates, the developed ANNs

models were used on the test dataset. Considering the

categorical nature of target data for MIC class of

antibiotics/biocides (H, M, L) in the case of

environmental isolates and AMR class of antibiotics (R, I,

S) in the case of clinical isolates, the confusion matrix

concept was employed to assess the accuracy of

predictions (23). Figure 9 shows the confusion matrix

over the test datasets. Concerning the response to

antibiotics, Figure 9 reveals that 82 out of 90 predictions

of AMR class by ANNs were correct, while it was 105 out

of 117 for biocide/antibiotic MIC class. More specifically,

Figure 8A shows that for I, R, and S classes of AMR, there

are 20, 34, and 28 correct predictions, presenting 90% -

92% accuracy of predictions. Regarding the H, L, and M

MIC classes for biocide/antibiotic dose, there are 46, 29,

and 30 correct predictions, representing 87% - 97%

accuracy. Thus, the error range of the applied ANNs

models in the current study varies between 3% to 13%,

which is similar to the error range of previously

conducted studies (2% - 15%) using machine learning

methods (24, 25). Generally, performance measures of

the implemented ANNs model, such as precision, recall,

F1-score, macro and micro-averaged F1, were better for

the test dataset of clinical isolates. While the highest

value of recall and F1-score were 0.93 and 0.92 for the S

class of clinical isolates, in the case of environmental

isolates, they were equal to 0.94 and 0.90 for the H class

of environmental isolates.

5. Discussion

Acinetobacter is a major cause of nosocomial

infections. In the present study, 29% and 41% of A.

baumannii were isolated from clinical and
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Figure 7. The final architecture of artificial neural networks (ANNs) model developed for clinical isolates

Table 2. Technical Details for Implementing Artificial Neural Networks Model Used in the Present Study

Categories Details

Software Python (v3.9)

Libraries TensorFlow (v2.4), Seaborn (v0.11.2), NumPy (v1.19), Pandas (v1.2), Matplotlib (v3.5.0), SKlearn (v1.1)

Operating system Ubuntu 20.04 LTS

Hardware NVIDIA GeForce RTX 3080, 16GB RAM, Intel Core i7 8th Gen Processor

environmental samples, respectively. According to a

previous study in Iran, antibiotic resistance patterns

among A. baumannii may vary widely in different parts

of a country or from one country to another (4). In the

present study, the minimum sensitivity level (R class of

CIP5 and TIC75) was observed in 70% of clinical A.

baumannii isolates. Biocides, as alternative

antimicrobials, are widely used in hospitals and other

health settings for disinfection of various medical

devices and surfaces. However, the recent increase in the

rate of microbial resistance to biocides has raised some

concerns, and current principles have not been very

successful in controlling nosocomial infections by MDR

pathogens (3). In the current study, CLX had better

potency compared to BZK and BZT biocides against

environmental A. baumannii isolates, similar to previous

studies’ reports (5, 26).

Today, AI algorithms are used for interpreting clinical

microbiology data with associated gains in efficiency

and diagnostic accuracy. Researchers have published a

proof-of-principle study on the use of AI for automated

interpretation of blood culture Gram stains and the use

of AI in the clinical recognition of several common

Gram stain morphologies (gram-negative rods, gram-

positive cocci in clusters, and gram-positive cocci in

chains) in positive blood culture smears (27, 28).

The best performance of the ANNs model in clinical

isolates was for the R AMR class with 92% accuracy,

indicating significant performance in recognizing

resistant A. baumannii isolates. This can be helpful for

medical staff to make better treatment decisions

regarding the selection of the proper antibiotic type and

dose for affected patients in each hospital ward. Among

environmental isolates, the best performance of the

ANNs model was for the L MIC class with 97% accuracy,
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Figure 8. Distribution of MIC values of antibiotics/biocides based on laboratory observations for A, clinical isolates; and B, environmental isolates.

implying a remarkable ability to detect isolates with a

low required dose of biocides for disinfection. In

contrast, the model’s accuracy was 87% in detecting

environmental isolates with the H MIC class. This

discrepancy can be attributed to the higher number of

effective parameters on the MIC class of environmental

isolates that were not considered, and hence the model

could not clearly recognize their influence (e.g., level of

exposure to UV, effect of prior infection and disinfection,

etc.). However, the model can provide an initial proposal

of the required MIC class for biocide and hence its

dosage for disinfecting hospital areas exposed to

infection.

The limitations of this study included a low number

of isolates from each infection source, potential biases,

and concerns regarding generalizability to other

populations.

5.1. Conclusions

The following outcomes are obtained from the

present work:

The application of the ANNs model, as a type of AI,

can be a helpful approach for medical staff to facilitate

and accelerate more accurate diagnoses, specifically in

the context of new emerging threats to public health,

such as the worldwide rising rate of AMR against A.

baumannii. The ANNs model can predict the AMR class of

various antibiotics for patients in hospitals and the MIC

class of various biocides for disinfecting the hospital

environment, taking into account a variety of affecting

parameters with remarkable accuracy. Therefore, it can

be a useful supporting tool for decision-makers in

medical systems in hospitals due to its fast and simple

application when there are limitations in resources

such as time, budget, trained medical staff, and medical

labs.

If a larger dataset can be used by increasing the

number of samples for further development of this

study, especially from hospitals located in different

geographical locations worldwide, the model can be

trained more precisely and comprehensively, and hence

can represent more precise results (e.g., accuracy

greater than 90%). In this way, this model can be

practically used in hospitals as a part of treatment

protocols, highlighting the benefits of cheap and fast

diagnosis and prescription.
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Figure 9. Confusion matrixes for prediction of artificial neural networks (ANNs) model outputs for A, clinical isolates; B, environmental isolates.
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