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Abstract

Context: Odontogenic keratocysts (OKCs) are aggressive jaw cysts characterized by a high recurrence rate, making accurate diagnosis critical for effective

treatment. Recent advances in artificial intelligence (AI) have demonstrated potential for enhancing diagnostic accuracy in histopathology. However, the

effectiveness of AI in diagnosing OKCs has not yet been systematically reviewed.

Objectives: This study aims to evaluate the diagnostic and prognostic performance of AI models in detecting OKCs in histopathologic images.

Methods: This systematic review was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA)

guidelines. A comprehensive literature search was performed across PubMed, Scopus, Embase, Google Scholar, and ScienceDirect to identify studies that utilized

AI models for diagnosing OKCs from histopathologic images. Studies were eligible for inclusion if they addressed the PICO (patient/population, intervention,

comparison, and outcomes) framework, specifically investigating whether AI models (I) can enhance diagnostic and prognostic accuracy (O) for OKCs in

histopathologic images (P). A meta-analysis was performed to pool the diagnostic performance of AI models across studies, and Egger’s test was conducted to

assess publication bias.

Results: A total of eight studies were included in the review. The risk of bias (ROB) across the included studies was generally low, with a few exceptions. The

pooled area under the curve (AUC) for AI models in diagnosing OKCs was 0.967 (95% CI: 0.957 - 0.978). The pooled sensitivity ranged from 0.89 to 0.92, and the

pooled specificity ranged from 0.88 to 0.94. The summary receiver operating characteristic (sROC) curve demonstrated an AUC of 0.93. Egger’s test for

publication bias yielded a P-value of 0.522, indicating no significant evidence of publication bias. The review also highlighted several limitations, including

small sample sizes, lack of external validation, and limited interpretability of the AI models.

Conclusions: Artificial intelligence models, particularly deep learning architectures, demonstrate high diagnostic accuracy in detecting OKCs from

histopathologic images.

Keywords: Artificial Intelligence, AI, Deep Learning, Machine Learning, Odontogenic Cyst, Odontogenic

Keratocyst, OKCs, Pathology

1. Background

Odontogenic keratocysts (OKCs) are distinct cystic

lesions of the jaw characterized by their aggressive
nature, high recurrence rates, and potential for

malignant transformation (1, 2). Accurate diagnosis of
OKCs is critical, as they often share overlapping

histopathological features with other odontogenic

cysts, such as dentigerous and radicular cysts, making
differentiation challenging (1, 3). Misdiagnosis can lead

to suboptimal treatment strategies, resulting in higher
recurrence rates, increased surgical interventions, and

prolonged patient morbidity. Given these clinical

implications, there is a pressing need for more precise

and reliable diagnostic approaches (1, 4).

Traditional diagnostic methods rely on manual

examination of histopathologic slides, which, although
considered the gold standard, have inherent

limitations. These include interobserver variability,

subjectivity, and diagnostic inconsistencies, particularly
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in cases with subtle morphological differences (5-10).

Moreover, manual evaluation can be time-consuming

and labor-intensive, further complicating timely and
accurate diagnoses in high-volume pathology settings.

Delays in diagnosis can negatively impact treatment
planning, potentially leading to disease progression and

an increased healthcare burden (5, 7, 10-13). These

limitations underscore the need for more objective,
efficient, and reproducible diagnostic tools.

Artificial intelligence (AI), particularly machine

learning (ML) techniques, has emerged as a

transformative solution for overcoming these

challenges (14-16). Deep learning models, including

convolutional neural networks (CNNs), have

demonstrated exceptional capabilities in analyzing

medical imaging data, including histopathologic slides

(17-19). Unlike traditional methods, AI-driven models can

rapidly process large datasets, identify complex

histopathological patterns with high precision, and

minimize diagnostic discrepancies among pathologists.

These models have also shown the potential to enhance

reproducibility, reduce diagnostic turnaround time, and

improve workflow efficiency, addressing key limitations

of conventional approaches (19-21).

Notably, deep learning models can detect subtle

histological features that may be overlooked by human
observers, resulting in superior diagnostic accuracy.

Additionally, AI-driven analysis significantly accelerates

the diagnostic workflow by processing thousands of

images in a fraction of the time required for manual

examination, making it a valuable tool for high-
throughput pathology applications. Successes in

various medical fields, such as cancer detection,

dermatopathology, and gastrointestinal pathology,

further underscore the potential of AI to improve

diagnostic accuracy and efficiency (19, 20, 22). However,

the application of AI to odontogenic lesions, including

OKCs, has faced both successes and limitations. While AI-

based approaches have shown promise for diagnosing

odontogenic lesions in radiographic images, their

performance in analyzing histopathologic slides has

been less extensively investigated and remains an area

requiring further exploration.

Several studies have applied AI to the diagnosis of
odontogenic lesions, with varying degrees of success (21,

23-26). For example, AI has achieved high diagnostic

accuracy in detecting odontogenic lesions in
radiographic and cone beam computed tomographic

(CBCT) imaging. In the study by Fedato Tobias et al. (27),
AI models demonstrated high sensitivity and specificity

in detecting and classifying lesions such as OKCs,

ameloblastomas, and dentigerous cysts from

radiographic images. Similarly, the study by Shrivastava

et al. (28) yielded comparable results through the

analysis of radiographic and CBCT images.

However, the application of AI to the analysis of

histopathologic images of OKCs has been less successful,

largely due to the scarcity of high-quality annotated

datasets. The limited availability of diverse and well-

curated histopathologic images restricts model

generalizability and increases the risk of overfitting,

particularly when deep learning models are trained on

small sample sizes. Inconsistent staining protocols,

imaging artifacts, and variations in histological

interpretation further contribute to these challenges,

making it difficult to develop robust AI models that

perform consistently across different datasets (21, 26,

27).

To address these challenges, techniques such as data

augmentation, transfer learning, and generative

adversarial networks (GANs) have been explored to

improve model robustness (15, 19, 29, 30). Data

augmentation artificially expands training datasets by
applying transformations such as rotation, flipping, and

contrast adjustments, thereby enhancing model

adaptability to real-world variations. Transfer learning

enables AI models to leverage pre-trained knowledge

from larger medical imaging datasets, reducing the
reliance on extensive OKC-specific data. Generative

adversarial networks have also been utilized to generate

synthetic histopathologic images, providing additional

training data to enhance model performance.

Implementing these strategies may help mitigate the
limitations posed by small sample sizes, improve

generalizability, and increase diagnostic accuracy (19,

30-32). Moreover, AI models can be trained not only to

diagnose OKCs but also to assess prognostic markers,

enabling clinicians to predict recurrence risk and tailor

personalized treatment plans. However, while AI has

been used to predict recurrence risks in some

odontogenic lesions, studies specifically addressing its

prognostic capabilities for OKCs remain scarce,

highlighting an important gap in current research (33,

34). Understanding AI’s role in both diagnosis and

prognosis is essential for integrating these models into

clinical workflows and ultimately improving patient

outcomes.

This systematic review and meta-analysis aim to

address this gap by evaluating the diagnostic and
prognostic performance of AI models in detecting OKCs

from histopathologic images. While previous systematic
reviews, including recent publications by Fedato Tobias

et al. (27) and Shrivastava et al. (28), have explored the
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Figure 1. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart

use of AI in diagnosing odontogenic lesions, their focus

has primarily been on radiographic and CBCT imaging.

This study differs significantly by providing a

comprehensive analysis of AI’s diagnostic and

prognostic performance in histopathologic image

analysis — an area that has received comparatively less

attention. By synthesizing data from previous studies,

this work aims to provide a critical assessment of the

current state of AI applications in this domain,

highlight existing limitations, and propose directions

for future research and clinical implementation.

Ultimately, this review seeks to bridge the gap between

AI research and clinical practice, offering valuable

insights for pathologists, researchers, and healthcare

professionals interested in integrating AI into

odontogenic pathology.

https://brieflands.com/articles/mejrh-158082


Shoorgashti R et al. Brieflands

4 Middle East J Rehabil Health Stud. 2025; 12(3): e158082

Table 1. The Exact Search Query for Each Database

Dataset Search Query Results

PubMed

("artificial intelligence" OR "artificial intelligence"[MeSH Terms] OR "deep learning" OR "deep learning"[MeSH Terms] OR "machine learning" OR
"machine learning"[MeSH Terms] OR “convolutional neural networks” OR “convolutional neural networks"[MeSH Terms]) AND (“odontogenic
keratocyst” OR “odontogenic keratocyst”[MeSH Terms] OR “jaw cysts” OR “jaw cysts”[MeSH Terms] OR “Odontogenic cysts” OR “Odontogenic
cysts”[MeSH Terms])

41

Scopus TITLE-ABS-KEY (["artificial intelligence" OR "deep learning" OR "machine learning" OR "convolutional neural networks"] AND ["odontogenic
keratocyst" OR "jaw cysts" OR "Odontogenic cysts"])

51

ScienceDirect ("artificial intelligence" OR "deep learning" OR "machine learning" OR "convolutional neural networks") AND (“odontogenic keratocyst” OR “jaw
cysts” OR “Odontogenic cysts”)

85

Embase
('artificial intelligence'/exp OR 'artificial intelligence' OR 'deep learning'/exp OR 'deep learning' OR 'machine learning'/exp OR 'machine learning' OR
'convolutional neural networks') AND ('odontogenic keratocyst'/exp OR 'odontogenic keratocyst' OR 'jaw cysts'/exp OR 'jaw cysts' OR 'odontogenic
cysts'/exp OR 'odontogenic cysts')

68

Google
Scholar

Allintitle: ("artificial intelligence" OR "deep learning" OR "machine learning" OR "convolutional neural networks") AND (“odontogenic keratocyst”
OR “jaw cysts” OR “Odontogenic cysts”)

7

2. Methods

2.1. Protocol and Registration

The preferred reporting items for systematic reviews

and meta-analyses (PRISMA) flow diagram used to track

the study selection process is presented in Figure 1. This

systematic review adheres to the guidelines outlined in

the PRISMA, specifically the extension for diagnostic test

accuracy studies (PRISMA-DTA) (35). The protocol for this

review has been registered with the international

prospective register of systematic reviews (PROSPERO)

under the registration number CRD42024607673.

2.2. Search Strategy

The search strategy for this systematic review

involved conducting a comprehensive literature search

across PubMed, Scopus, Embase, Google Scholar, and

ScienceDirect, covering publications from their

inception to May 5, 2024, with an update performed on

January 9, 2025. The selection of search terms was based

on a combination of the study’s keywords,

corresponding medical subject headings (MeSH) terms

in PubMed, and insights drawn from existing AI-based

systematic reviews in related fields. Additionally, expert

opinion was sought to optimize and refine the keyword

list. Several key strategies were employed to ensure

comprehensive coverage of relevant studies. Table 1

provides detailed information on the search queries

used for each database.

No language or time restrictions were applied during

the search. Additionally, the reference lists of the
included articles were screened to identify any

additional relevant studies.

2.3. Inclusion and Exclusion Criteria

Studies were eligible for inclusion if they addressed

the PICO (patient/population, intervention, comparison,

and outcomes) framework by evaluating whether AI

models (I) can enhance diagnostic and prognostic

accuracy (O) for OKCs in histopathologic images (P):

Population (P): Histopathologic images of OKCs;

intervention (I): Use of AI or MI models for diagnostic

purposes; comparison and outcomes (C, O): Studies

were required to report at least one performance metric,

such as accuracy, sensitivity, specificity, or area under

the curve (AUC); study design: This review included

original research articles employing experimental,

observational, retrospective, or prospective study

designs.

Case reports, reviews, editorials, and commentaries

were excluded. Additionally, studies that did not report

diagnostic performance metrics or used only panoramic

or CBCT images for diagnosis were excluded.

2.4. Study Selection

EndNote X9 was used to manage citations. After

eliminating duplicates, three reviewers independently

screened the titles and abstracts of the identified

studies. Full-text articles were retrieved for studies
deemed potentially eligible by the lead reviewer. Any

discrepancies among the three reviewers were resolved

through discussion, and, if necessary, with the input of a

fourth reviewer.

2.5. Data Extraction

Two trained researchers and dentists independently

extracted data from the included studies using a
predefined data extraction form. The extracted data

were verified by two reviewers to reduce the risk of any
possible bias. The collected data include study

characteristics such as author, year, sample size,

inclusion and exclusion criteria, artificial intelligence

https://brieflands.com/articles/mejrh-158082
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model (types of models like convolutional neural

networks, support vector machines), architecture,

training, and testing datasets, diagnostic performance

including sensitivity, specificity, accuracy, and area

under the curve, data preprocessing methods such as

data augmentation and image normalization.

Additionally, we recorded details regarding dataset
size, the number of histopathologic images used for

training and validation, and whether studies employed

single-institution or multi-institutional data sources.

Studies that did not specify dataset characteristics or

validation procedures were noted. Discrepancies in data
extraction were resolved through consultation with the

reviewer.

2.6. Quality Assessment

The risk of bias in the included studies was
independently assessed by three reviewers using the

quality assessment of diagnostic accuracy studies tool.
This tool evaluates four domains: patient selection,

index test, reference standard, and flow and timing.

Each study was rated as having a low, high, or unclear
risk of bias in each domain.

To specifically assess the reliability of the datasets

used in artificial intelligence model training, we

examined whether studies reported dataset size, data

augmentation techniques, external validation, and

measures to prevent overfitting, such as cross-validation

and transfer learning. Studies with small, single-

institution datasets or unclear validation procedures

were flagged as having potential concerns regarding

generalizability.

Any disagreements among the reviewers were

resolved through discussion led by the lead reviewer.

2.7. Data Synthesis

The primary outcome measured was the AUC, while

secondary outcomes included sensitivity, specificity, and

accuracy. A random-effects model was employed to

account for heterogeneity among the studies, which was

assessed using the I² statistic. The pooled diagnostic

accuracy was represented as a summary receiver

operating characteristic (sROC) curve. In this meta-

analysis, the weight of each study was determined based

on its sample size, with larger studies contributing

more to the pooled estimates.

Publication bias was evaluated using Egger’s test. All
statistical analyses were conducted using Python,

employing the NumPy package for data manipulation,
Matplotlib for visualization, and scikit-learn (sklearn)

for ROC curve analysis. A P-value of less than 0.05 was

considered statistically significant.

3. Results

The key findings from the studies are summarized in

Table 2.

3.1. Study Selection and Inclusion Process

A total of 252 studies were identified through

database searches, with one additional record found

through manual searching of reference lists. After

removing 86 duplicates, 166 studies remained for title

and abstract screening. Following this step, 152 studies

were excluded based on irrelevance, leaving 14 studies

for full-text review. After full-text evaluation, 6 studies

were excluded for not meeting the inclusion criteria

(e.g., lack of analysis of OKCs, use of non-histopathologic

images, or lack of access to full text). This process

resulted in the final inclusion of 9 studies (8 from

database searches and 1 from manual search) in this

systematic review. Among these, 5 studies provided

sufficient data to be included in the meta-analysis.

3.2. Study Characteristics and Data Quality

Nine studies published between 2011 and 2024 met

the inclusion criteria, demonstrating progressive

advancements in the application of AI for OKC analysis

(5-7, 11, 36-40).

3.2.1. Sample Prevalence, Data Sources, and Eligibility
Criteria

The sample sizes in the studies varied substantially,

ranging from 48 whole slide images (WSIs) in Mohanty

et al. (7) to over 1,500 images in other studies (11, 37). The
prevalence of OKC cases within these datasets ranged

from 20 in Frydenlund et al. (39) and Eramian et al. (40)

to 400 cases in Cai et al. (5).

Data sources were diverse, including both single-

institution and multi-institution datasets, with

variations in image resolution, staining protocols, and

acquisition equipment. Most studies relied on single-

institution datasets (5, 11, 36, 37), while some

incorporated multi-institutional data (6, 7). Additionally,

three studies did not specify their data sources (38-40),

which may impact dataset diversity and overall

generalizability.

The eligibility criteria among the included studies

varied, but generally ensured that only high-quality

images and relevant cases were included for AI-based

analysis. Studies commonly excluded cases with unclear

or faded hematoxylin and eosin staining, non-

https://brieflands.com/articles/mejrh-158082
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odontogenic or metastatic cysts, and images with poor

resolution or artifacts.

3.2.2. Data Preprocessing and Labeling Procedure

To enhance model robustness, most studies

implemented comprehensive preprocessing pipelines.

Common techniques included color normalization (e.g.,

the Macenko method), white background removal, and

tile generation from WSIs. Additionally, data

augmentation strategies — such as random flipping,

rotation, shifting, zooming, and shear transformations

— were routinely applied to expand the effective size and

diversity of the training sets. These preprocessing steps

were critical for ensuring consistent image quality and

mitigating the effects of dataset heterogeneity, thereby

contributing to the high diagnostic performance

observed.

In most included studies, samples were labeled by

experienced pathologists, ensuring high-quality

annotations. Labels were assigned based on

characteristic histopathological features of OKCs,

including subepithelial hyalinization, incomplete

epithelial lining, and surface corrugation.

3.2.3. Training Data Set and Training Process of Models

The number of images in the training sets and the

training processes varied significantly across the

studies. Training datasets ranged from as few as 38

images in the study by Eramian et al. (40) to more than

1,500 images in the studies by Rao et al. (11, 37). Among

the deep learning architectures, DenseNet-169 —

employed in the studies by Rao et al. (11, 37) — was

trained using the Adam optimizer (learning rate = 0.001,

batch size = 12 or higher) and incorporated data

augmentation techniques such as shear, rotation, and

zoom transformations. DenseNet-169 achieved high

classification performance, with reported accuracy

exceeding 91% and an AUC ranging from 0.9597 to 0.9653

(11, 37).

Similarly, Inception-V3 — used by Mohanty et al. (6)

and Cai et al. (5) — demonstrated robust classification

performance, with RMSprop as the optimizer and a

learning rate of 0.0001 (5, 6). Additionally, Cai et al. (5)

optimized the model using fivefold cross-validation and

grid-search hyperparameter tuning, with a batch size of

32 and a dropout rate of 0.5 to prevent overfitting. An

advanced hybrid deep learning approach, attention-

based image sequence analyzer (ABISA), was also

evaluated. This model, proposed by Mohanty et al. (7),

integrates convolutional and recurrent layers with an

attention mechanism for enhanced interpretability. The

ABISA was trained using the Adam optimizer with a

cyclical learning rate schedule (0.0001 to 0.001) and

extensive data augmentation techniques, including

contrast adjustment and histogram equalization (7).

Florindo et al. (38) introduced a morphological

classification framework using Bouligand-Minkowski

fractal descriptors to differentiate OKCs from other

cysts. This method, applied to 150 histological images,

demonstrated a classification accuracy of 98%,

highlighting the potential of fractal-based feature

extraction as a complementary approach to deep

learning models.

The study by Eramian et al. (40) further contributed

by developing an automated epithelial segmentation

algorithm using binary graph cuts. The segmentation

model was trained on 38 histological images, achieving

a mean sensitivity of 91.5% and specificity of 85.1%, with

the highest accuracy observed in OKCs (96.1% sensitivity,

98.7% specificity). Their color standardization and edge

detection preprocessing steps were crucial in refining

AI-driven histopathological segmentation.

3.2.4. Model Diagnostic and Prognostic Performance

Recent studies (2021 - 2024) exhibited superior

diagnostic performance, with accuracy rates

consistently exceeding 90% (5, 7, 11, 37). The ABISA

achieved the highest diagnostic accuracy (98%, AUC =

0.98) (7), while the P-C-ReliefF model demonstrated

comparable performance (97% accuracy, AUC = 0.99) (6).

Traditional MI approaches showed varying but

promising results, with LightGBM and XGBoost

achieving AUCs of 0.935 and 0.93, respectively (5). Deep

learning architectures, particularly DenseNet-169 and

Inception-V3, demonstrated robust performance with

AUCs ranging from 0.9597 to 0.9653 (11, 37), while

ensemble approaches further improved accuracy up to

97% (11). Notably, two recent studies specifically

addressed OKC recurrence prediction, with Rao et al. (11)

achieving 97% accuracy (AUC = 0.98) using a novel

ensemble model, while Cai et al. (5) reported a

prognostic AUC of 0.840 (95% CI: 0.751 - 0.930). Most

studies implemented comprehensive preprocessing

pipelines, including color normalization, white

background removal, and tile generation from WSIs (5-7,

11, 37). Data augmentation strategies, reported in five

studies (5-7, 11, 37), predominantly utilized random

flipping, rotation, and shear transformations. Early

approaches (2011 - 2017) focused on basic classification

tasks using traditional MI methods, achieving moderate

success (72 - 98% accuracy range) (38-40), while recent

studies employed more sophisticated architectures and

addressed complex tasks such as recurrence prediction

https://brieflands.com/articles/mejrh-158082
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Figure 2. The results of the risk of bias (ROB) assessment.

Table 3. The Risk of Bias Assessment and Applicability Results

Authors (Year)

ROB Assessment Applicability Assessment

Patient/Sample
Selection

Index
Test

Reference
Standard

Flow and
Timing

Patient/Sample
Selection

Index
Test

Reference
Standard

Cai et al. (2024) ( 5) Low Low Unclear Low Low Low Low

Kim et al. (2024) ( 36) Unclear Low Low Low Low Low Low

Mohanty et al. (2023) ( 7) Low Low Low Low Low Low Low

Mohanty et al. (2023) ( 6) Low Low Low Low Low Low Low

Rao et al. (2022) ( 11) Low Low Low Low Low Low Low

Rao et al. (2021) ( 37) Low Unclear Low Unclear Low Low Low

Florindo et al. (2017) ( 38) Unclear Unclear Low Low Low Low Low

Frydenlund et al. (2014)
( 39) Unclear Low Low Unclear Low Low Low

Eramian et al. (2011) ( 40) High Unclear Low Low Low Low Low

(5, 7, 11, 37). This temporal progression reflects both

methodological advancement and improved

performance metrics, with modern approaches

consistently achieving AUC values above 0.90 and

providing more robust diagnostic and prognostic

capabilities (5, 7, 11, 37).

Notably, one study incorporated large language

models (LLMs) such as Chat-GPT4, demonstrating

comparable diagnostic accuracy to clinicians in

diagnosing OKCs, with a concordance rate of 41% and a

kappa value of 0.14 (36). While Chat-GPT4 showed

strengths in processing textual clinical data, it exhibited

slightly lower specificity (90.4%) and sensitivity (30.1%)

compared to clinicians (specificity: 95.7%, sensitivity:

32.9%).

3.3. Risk of Bias and Applicability

The ROB across the included studies was generally

low, with a few exceptions. Four of the nine studies

(44.4%) demonstrated low risk across all four domains

(5, 7, 11), whereas five studies (55.6%) exhibited concerns

in one or more areas. Specifically, in the patient

selection domain, 55.6% of studies were rated as low risk,

33.3% as unclear, and 11.1% as high risk. For the index test

domain, 66.7% were rated as low risk and 33.3% as

https://brieflands.com/articles/mejrh-158082
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unclear, while all studies (100%) showed low risk in the

reference standard domain. In the flow and timing

domain, 77.8% of studies were classified as low risk, and

22.2% as unclear (Figure 2 and Table 3).

3.4. Meta-Analysis

The meta-analysis was conducted to assess the pooled

diagnostic accuracy of the included studies. The pooled

analysis of five studies that reported the AUC yielded a

value of 0.967 (95% CI: 0.957 – 0.978), indicating strong

overall diagnostic accuracy. Additionally, heterogeneity

among the studies was minimal (I² = 0%), suggesting

consistent performance across various AI models and

datasets (Figure 3A).

Forest plots for sensitivity and specificity showed

that the pooled sensitivity ranged from 0.89 to 0.92,

while the pooled specificity ranged from 0.88 to 0.94

(Figure 3B). The sROC curve, which assesses overall

diagnostic performance by combining sensitivity and

specificity, demonstrated an AUC of 0.93. This result

further confirms the high diagnostic accuracy of AI

models across studies. Most data points were

concentrated near the upper-left corner of the sROC

plot, indicating a strong balance between sensitivity

and specificity (Figure 3C).

Egger’s test for publication bias produced a P-value of

0.522, suggesting that there was no significant evidence

of publication bias.

4. Discussion

This systematic review and meta-analysis explored

the diagnostic and prognostic performance of AI

models in detecting OKCs from histopathological

images. The findings confirm the promising potential of

AI — particularly deep learning models — in achieving

high diagnostic accuracy, as demonstrated by a pooled

AUC of 0.967. The pooled sensitivity of 0.90 suggests

that AI systems were effective in identifying positive

OKC cases, while a pooled specificity of 0.91 indicates a

robust capability to reduce false positives by correctly

identifying negative cases. These results emphasize the

role AI can play in enhancing clinical decision-making

for OKCs, especially in scenarios where access to expert

pathologists is limited.

AI models excel at processing intricate

histopathological images and autonomously learning

hierarchical features (19, 30, 41, 42). Compared to

conventional diagnostic methods, AI-driven models

significantly reduce interobserver variability and offer a

more standardized approach to pathology assessment.

Specifically, DenseNet-169, which achieved an impressive

AUC of 0.9872, exemplifies the strengths of AI in

handling high-resolution medical images due to its

efficient feature extraction mechanisms (29, 37, 43).

Unlike traditional MI models such as support vector

machines (SVMs), deep learning approaches eliminate

the need for manual feature extraction, minimizing

potential biases and allowing for more adaptive analysis

of complex datasets (44-47). This adaptability is

particularly beneficial in distinguishing OKCs from

histologically similar cystic lesions.

Several studies included in the meta-analysis

demonstrated that AI models achieve diagnostic

accuracy comparable to, or even surpassing, that of

human pathologists (5, 7). The pooled sensitivity (0.89 -

0.92) and specificity (0.88 - 0.94) reflect the high

diagnostic precision of AI, which also offers additional

benefits such as the ability to process large volumes of

data consistently without fatigue (48, 49). Moreover, AI

can help mitigate inter-observer variability, a common

issue in histopathological evaluations (31, 49-51). This

aspect is particularly relevant in diagnosing OKCs,

where histopathological features may overlap with

those of other odontogenic cysts, leading to potential

misclassification.

4.1. Conclusions

In conclusion, AI models represent a significant

advancement in diagnosing OKCs, offering high

accuracy, sensitivity, and specificity in analyzing

histopathologic images. These systems hold great

potential for enhancing diagnostic workflows,

improving concordance rates, and reducing variability

among pathologists. However, several challenges must

be addressed to fully realize this potential. A key priority

is the external validation of AI models using diverse,

large-scale datasets to ensure generalizability across

populations. The development of explainable AI tools is

equally critical to facilitate trust and adoption among

clinicians. Additionally, standardized evaluation

methods are essential to enable meaningful cross-study

comparisons and to guide clinical integration efforts.

4.2. Comparison with Previous Studies

To the best of our knowledge, no systematic review

and meta-analysis have been conducted to date to assess

the diagnostic and prognostic performance of AI

models in detecting OKCs from histopathologic images.
While previous reviews, such as those by Fedato Tobias

et al. (27) and Shrivastava et al. (28), have explored the

role of AI in diagnosing odontogenic cysts and tumors,

their focus was primarily on radiographic and CBCT

imaging. In contrast, our systematic review provides a
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Figure 3. A, The pooled analysis of five studies that reported area under the curve (AUC) with a value of 0.967 (95% CI: 0.957 - 0.978) and low heterogeneity (I2 = 0.0%); B, the
pooled sensitivity and specificity across the studies further demonstrated the robust performance of the artificial intelligence (AI) models, the pooled sensitivity was 0.90 (95%
CI: 0.89 - 0.92) and the pooled specificity was 0.91 (95% CI: 0.88 - 0.94), the forest plots for both sensitivity and specificity displayed relatively narrow confidence intervals,
indicating consistent diagnostic performance across the studies included; C, the summary receiver operating characteristic (sROC) curve had an AUC of approximately 0.93,
further highlighting the diagnostic strength of the AI models.

comprehensive evaluation of AI performance in

histopathologic image analysis — an area that has

received comparatively less attention.

Our findings align with those of Fedato Tobias et al.
(27), who reported high sensitivity and specificity of AI

models in odontogenic cyst classification. However, our

study expands on this by emphasizing the impact of

preprocessing techniques, model architecture, and

dataset diversity on AI performance. Similarly,
Shrivastava et al. (28) highlighted the need for AI

validation across multiple imaging modalities, which

aligns with our recommendation for external dataset

testing. Additionally, Shi et al. (52) focused solely on

radiographic images without conducting a meta-
analysis or systematic review, further underscoring the

novelty and significance of our approach.

4.3. Generalizability and Model Evaluation on External Data

One of the key limitations of current AI models is
their limited generalizability due to reliance on single-

institution datasets and the lack of external validation.
Many of the studies included in this review trained their

models on internal datasets (5, 11, 36, 37), raising

concerns about their applicability across different

populations, imaging settings, and clinical

environments.

Potential solutions to these concerns can be
considered in future research. Conducting multi-center

validation studies will help ensure that AI models

generalize well across different clinical settings.

Utilizing independent test datasets, instead of relying

solely on internal cross-validation, can improve
robustness and detect overfitting. Standardizing

imaging protocols and annotation methods will reduce

inconsistencies in histopathologic image analysis,

leading to more reliable AI predictions. Collaborative

efforts with leading organizations, including the
international organization for standardization (ISO)

and the Institute of Electrical and Electronics Engineers

(IEEE), can facilitate the creation of these guidelines.

Implementing common data models (CDMs) and

standardized ontologies, such as the observational

medical outcomes partnership (OMOP) and the unified

medical language system (UMLS), will harmonize data

representation across institutions. Employing domain

adaptation techniques can enhance model adaptability
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to different imaging sources and patient populations.

Additionally, federated learning approaches allow AI

models to be trained on diverse datasets from multiple

institutions without transferring raw patient data,

preserving privacy while improving generalizability (11,

37-40).

4.4. Challenges in of Artificial Intelligence-Based
Odontogenic Keratocysts Diagnosis

One of the primary objectives of this study was to

examine the challenges associated with AI-driven

diagnosis, particularly in detecting OKCs. One challenge

is the small sample sizes used for training, testing, and

validating the model. of Artificial intelligence models

trained on datasets with disproportionately low

numbers of OKC cases may exhibit bias toward more

prevalent cyst types, leading to suboptimal diagnostic

performance (53, 54). To mitigate these biases, we

recommend using data augmentation, class weighting,

and synthetic data generation techniques — such as

GANs — to create more balanced datasets (32, 53, 54).

Variability in histopathologic image preprocessing,

including color normalization, tile selection, and

contrast adjustment, significantly affects AI model

accuracy. Inconsistent preprocessing pipelines across

studies can lead to performance discrepancies,

highlighting the need for standardized methodologies

to ensure reproducibility and reliability. Deep learning

models often function as "black boxes," limiting the

interpretability of their decision-making processes (55-

57). Explainability techniques such as Grad-CAM and

SHAP values can improve transparency, fostering trust

among clinicians and facilitating the integration of AI

into diagnostic workflows. Grad-CAM generates

heatmaps highlighting the regions of histopathological

images that contributed most to the model’s decision,

aiding pathologists in understanding why certain areas

were classified as OKC. SHAP values, on the other hand,

quantify the contribution of each feature in a model’s

decision-making process, providing numerical insights

into AI predictions. In clinical practice, these techniques

can enhance the interpretability of AI-driven diagnoses

by offering visual and quantitative explanations,

increasing clinician trust, and supporting AI-assisted

decision-making (55).

4.5. Practical Applications of Artificial Intelligence Models in
Diagnostic Environments

AI has significant potential for integration into real-
world diagnostic workflows in hospitals and clinics. By

incorporating AI models into pathology laboratories,

clinicians can improve diagnostic speed and accuracy,

particularly in settings with high case volumes.

Potential applications include: (1) Automated screening

of histopathologic slides to assist pathologists in

prioritizing complex cases; (2) AI-assisted second

opinions to reduce diagnostic variability and enhance

confidence in challenging cases; and (3) predictive

modeling for recurrence risk assessment, enabling

personalized treatment planning (15, 28, 52).

For successful integration of AI models into clinical

workflows, several structured steps should be

considered. First, AI models should be validated on

external datasets and multi-center studies to ensure

robustness across different clinical environments.

Second, AI systems must be seamlessly integrated into

existing laboratory information systems (LIS) and

digital pathology platforms to facilitate real-time

analysis of histopathological slides. Third, AI-driven

decision support tools should be designed to provide

interpretable outputs, such as probability scores,

heatmaps, or case prioritization, to assist rather than

replace pathologists in diagnostic decision-making.

Fourth, comprehensive training programs should be

implemented to familiarize clinicians and laboratory

staff with AI-based tools, ensuring their appropriate use

and interpretation. Fifth, regulatory approval and

compliance with healthcare data protection laws (e.g.,

HIPAA, GDPR) should be ensured before deployment.

Finally, continuous model monitoring and updates

based on real-world clinical feedback are essential to

maintain accuracy and address evolving diagnostic

challenges. These steps will facilitate the responsible

and effective implementation of AI in pathology

laboratories, ultimately improving diagnostic efficiency

and accuracy.

However, practical challenges remain, particularly

concerning how AI can be seamlessly incorporated into

existing diagnostic systems. To facilitate this, AI tools

must be user-friendly and compatible with current

diagnostic infrastructure, allowing pathologists to

easily interact with and interpret AI results. Additionally,

training programs should be developed to familiarize

clinicians with the capabilities and limitations of AI

tools, ensuring they are used appropriately to augment

human expertise.

4.6. Ethical Considerations and Future Recommendations

The integration of AI in pathology necessitates

careful ethical consideration to ensure responsible

implementation. Adopting the framework proposed by

Rokhshad et al. (58), key ethical principles —

transparency, fairness, privacy protection,
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accountability, and equitable access — must guide AI

deployment.

4.6.1. Transparency

Transparent AI development, including clear

documentation of training data, algorithms, and

decision-making processes, is essential to foster trust

among clinicians and patients. Active participation

from diverse stakeholders, such as pathologists,

ethicists, and policymakers, is crucial for maintaining

ethical AI applications in pathology (58, 59).

4.6.2. Fairness

Addressing bias in AI models is imperative, as

imbalanced training datasets may lead to disparities in

diagnostic performance. Ensuring diverse

representation in training data and prioritizing

equitable access — particularly in low-resource settings

— can enhance the fairness of AI applications in

pathology (58-60).

4.6.3. Privacy Protection

Given AI’s reliance on sensitive medical data,

compliance with data protection regulations (e.g.,

GDPR, HIPAA) is critical. Techniques like federated

learning and anonymization can help maintain privacy

while enabling AI models to learn securely from diverse

datasets (58).

4.6.4. Accountability and Equitable Access

Artificial intelligence should function as a supportive

tool rather than a replacement for human expertise.

Clinicians must retain responsibility for final diagnostic

decisions, necessitating targeted training programs to

improve digital literacy and ensure appropriate AI

integration into clinical workflows (58, 59, 61).

AI development should consider long-term

sustainability, particularly its environmental impact.

Computational efficiency and energy-conscious AI

model optimization can mitigate concerns related to

high resource consumption and carbon emissions (58,

59, 61).

To facilitate responsible AI adoption, regulatory

frameworks should define legal responsibilities for AI

developers and healthcare providers. Independent AI

oversight committees and interdisciplinary

collaborations are essential for standardizing AI

integration in diagnostic workflows while addressing

ethical concerns (58, 61).

4.7. Environmental Impacts of Developing Artificial
Intelligence Models

Deploying AI models in clinical settings offers

significant benefits but also raises environmental

concerns, primarily due to high energy consumption,

increased carbon emissions, and electronic waste.

Training sophisticated AI models requires substantial

computational power, contributing to rising electricity

usage and carbon footprints — particularly if data

centers rely on fossil fuels. Additionally, frequent

hardware updates generate electronic waste, further

impacting the environment. To mitigate these effects,

several strategies can be implemented. Developing

energy-efficient AI models through techniques such as

model quantization and pruning can reduce

computational demands. Optimizing data storage and

management, along with utilizing renewable energy

sources for data centers, can significantly lower AI’s

carbon footprint. Implementing green computing

practices, such as dynamic power management and

hardware–software optimization, can further enhance

energy efficiency. Regular monitoring, maintenance,

and lifecycle assessments of AI systems can support

long-term sustainability while reducing the need for

resource-intensive retraining. By adopting these

strategies, healthcare institutions can balance the

benefits of AI advancements with environmental

responsibility, ensuring that AI-driven clinical

applications align with broader sustainability goals (62-

64).

4.8. Study Limitations

This study acknowledges certain limitations. A key

limitation is the small sample sizes in several studies

(38-40), which heightens the risk of overfitting.

Overfitting occurs when AI models perform

exceptionally well on training data but fail to generalize

to unseen cases (53, 54). To mitigate this risk, several

strategies can be employed. First, data augmentation

techniques — such as rotation, flipping, contrast

adjustment, and stain normalization — can artificially

expand the dataset, improving the model’s ability to

generalize to new cases. Second, transfer learning,

where AI models are pre-trained on large-scale

histopathological datasets before fine-tuning on smaller

OKC-specific datasets, can enhance performance and

reduce overfitting. Third, cross-validation methods,

particularly k-fold cross-validation, should be used to

ensure that the model is evaluated on different subsets

of data, thereby reducing bias from reliance on a single

training set. Fourth, regularization techniques such as

https://brieflands.com/articles/mejrh-158082


Shoorgashti R et al. Brieflands

12 Middle East J Rehabil Health Stud. 2025; 12(3): e158082

dropout, batch normalization, and L2 regularization can

help prevent the model from overfitting to features that

may not generalize well. Fifth, leveraging synthetic data

generation using GANs can supplement real training

samples, particularly for rare cases like OKCs. Lastly,
multi-center collaborations and federated learning

approaches should be pursued to train AI models on

more diverse datasets without compromising patient

privacy.

Another limitation was that few studies reported

data suitable for meta-analysis, including AUC,

sensitivity, specificity, and accuracy. Additionally, in the

meta-analysis, the weight of each study was determined

by its sample size, reflecting the relative contribution of

each study's data volume to the pooled estimate. While

this approach is straightforward, it does not account for

differences in study precision or variability, which may

limit the robustness of the pooled results.

Finally, one study had to be excluded due to the lack

of access to its full text, which prevented a

comprehensive evaluation of its methodology and

results.
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Table 2. The Summary of Findings of Included Studies

Authors
(Year) Study’s Aim

Sample
Prevalence

Data
Sources

Data Set
(Training,
Validation,
Testing)

Inclusion
and
Exclusion
Criteria

Labeling
Procedure

AI Model
Task

Pre-processing
(P)
Augmentation
(A)

Model
(Algorithm,
Architecture)

Outcome

Cai et al.
(2024)
( 5)

Develop AI
models for
diagnosis and
prognosis of OKC

519 cases
(OKC: 400,
OOC: 90, GC:
29)

Single-
institution

Diagnostic:
Training
(70% - 363
cases),
testing (30%
- 156 cases)
prognostic:
1688 WSIs,
training
(280 cases),
testing (120
cases)

Excluded
cases with
unclear or
faded H&E
staining

NA Classification

P: Macenko
method (tiles of
512 × 512 pixels
from WSIs, white
background
removal using AI,
color
normalization),
Z-score
normalization A:
Random
horizontal and
vertical flipping

SVM, random
forest, extra
trees,
XGBoost,
LightGBM,
MLP

Diagnostic
AUC = 0.935
(95% CI:
0.898-0.973)
prognostic
AUC = 0.840
(95% CI: 0.751-
0.930)
prognostic
accuracy =
67.5%,
sensitivity =
92.9% (multi-
slide)

Kim et
al.
(2024)
( 36)

Evaluate the
agreement
between clinical
diagnoses and
histopathological
outcomes for
OKCs and
odontogenic
tumors by
clinicians,
ChatGPT-4, and
ORAD

623
specimens
(OKC: 321,
odontogenic
tumors: 302)

Single-
institution

NA

Excluded
non-
odontogenic,
metastatic,
adjacent
spread, and
non-OKC
cysts

NA Classification NA

ChatGPT-4
(language
model) ORAD
(Bayesian
algorithm)

ChatGPT-4
concordance
rates: 41.4%
ORAD
concordance
rates: 45.6%

Mohanty
et al.
(2023)
( 7)

Automate risk
stratification of
OKC using WSIs

48 WSIs (508
tiled
images)

Multi-
institutional

Training
(70%),
validation
(10%),
testing
(20%)

Excluded
blurry
images and
those with
poor staining
quality

Manual
labeling by
pathologists

Classification

P:
Entropy/variance
calculation to
remove white
tiles A: Image
rotation, flipping

Attention-
based image
sequence
analyzer
(ABISA), Vision
Transformer,
LSTM

ABISA:
Accuracy =
98%,
Sensitivity =
100%, AUC =
0.98 VGG16:
Accuracy =
80%, AUC =
0.82 VGG19:
Accuracy =
73%, AUC =
0.77
inception V3:
Accuracy =
82%, AUC =
0.91

Mohanty
et al.
(2023)
( 6)

Build automation
pipeline for
diagnostic
classification of
OKCs and non-
KCs using WSIs

48 OKC
slides, 20 DC
slides, 37 RC
slides, 6069
OKC tiles,
5967 non-KC
tiles

Multi-
institutional

Training
(80%),
validation
(20%)

Excluded
blurry tiles,
white tiles,
and those
with non-
important
information
using OTSU
thresholding

Manual
labeling by
pathologists

Classification

P: Tile generation
(2048 × 2048),
white tile
removal, OTSU
thresholding A:
Rotation,
shifting, zoom,
flipping

P-C-reliefF
model (PCA +
reliefF),
VGG16, VGG19,
inception V3,
standard CNN

P-C-reliefF:
Accuracy =
97%, AUC =
0.99 VGG16:
Accuracy =
97%, AUC =
0.93 VGG19:
Accuracy =
96%, AUC =
0.93
standard
CNN:
Accuracy =
96%, AUC =
0.93
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Authors
(Year) Study’s Aim

Sample
Prevalence

Data
Sources

Data Set
(Training,
Validation,
Testing)

Inclusion
and
Exclusion
Criteria

Labeling
Procedure

AI Model
Task

Pre-processing
(P)
Augmentation
(A)

Model
(Algorithm,
Architecture)

Outcome

Rao et al.
(2022) ( 11)

Develop
ensemble
deep-
learning-
based
prognostic
and
prediction
algorithm for
OKC
recurrence

1660 digital
slide
images
(1216 non-
recurring,
444
recurring
OKC)

Single-
institution

Training
(70%),
testing (15%),
validation
(remaining)

Sporadic OKC
with 5-year
follow-up;
excluded
syndromic
OKC and
radical
treatment
cases

Labeling based
on
histopathological
features
(subepithelial
hyalinization,
incomplete
epithelial lining,
corrugated
surface)

Classification
A: Rotation,
shifting, shear,
flipping

DenseNet-121,
inception-V3,
inception-
ResNet-V2,
novel
ensemble
model

DenseNet-
121:
Accuracy =
93%, AUC =
0.9452
inception-
V3:
Accuracy =
92%, AUC =
0.9653
novel
ensemble:
Accuracy =
97%, AUC =
0.98

Rao et al.
(2021) ( 37)

Develop a
deep
learning-
based system
for
diagnosing
OKCs and
non-OKCs

2657
images (54
OKCs, 23
DCs, 20
RCs)

Single-
institution

Training
(70%),
validation
(15%), test
(15%)

Excluded
inflamed
keratocysts
and
inadequate
biopsies

Manual labeling
by pathologists Classification

A: Shear,
rotation,
zooming,
flipping; region-
of-interest
isolation

VGG16,
DenseNet-169;
DenseNet-169
trained on full
image and
epithelium-
only dataset

VGG16:
Validation
accuracy =
89.01%, Test
accuracy =
62%
DenseNet-
169 (Exp II):
Validation
accuracy =
89.82%, Test
accuracy =
91%, AUC =
0.9597
DenseNet-
169 (Exp III):
Test
accuracy =
91%, AUC =
0.9637
Combined
model (Exp
IV):
Accuracy =
93%

Florindo et
al. (2017)
( 38)

Classify OKC
and radicular
cysts

150 images
(65
sporadic
OKCs, 40
syndromic
OKCs, 45
RCs)

NA
Random 10-
fold cross-
validation

Excluded
images with
artifacts or
poor quality

Manual labeling
by
histopathologists

Classification
P: Grey-level
conversion,
segmentation

Bouligand-
Minkowski
descriptors +
LDA

72% (OKC vs.
RC vs.
syndromic
OKC) 98%
(OKC vs.
radicular)
68%
(sporadic
vs.
syndromic
OKC)

Frydenlund
et al. (2014)
( 39)

Automated
classification
of four types
of
odontogenic
cysts

73 images
(20 DC, 20
LPC, 20
OKC, 13
GOC)

NA

Training (38
images),
validation
(37 images),
testing (39
images)

Excluded
images with
poor quality
or resolution
issues

Manual labeling
by pathologists Classification

P: Color
standardization,
smoothing,
segmentation

SVM, bagging
with logistic
regression
(BLR)

SVM: 83.8%
(validation),
92.3%
(testing)
BLR: 95.4%
(testing)

Eramian et
al. (2011)
( 40)

Segmentation
of epithelium
in H&E-
stained
odontogenic
cysts

38 training
images, 35
validation
images

NA

Training: 38
images (10
dentigerous
cysts, 10
odontogenic
keratocysts,
10 lateral
periodontal
cysts, 8
glandular
odontogenic
cysts),
validation:
35 images
(same
distribution)

Excluded
inflammatory
odontogenic
cysts

Manually
identified
epithelium and
stroma pixels

Segmentation

P: Luminance
and
chrominance
standardization

Graph-based
segmentation

Sensitivity:
91.5%
specificity:
85.1%
accuracy:
85%

Abbreviations: AI, artificial intelligence; AUC, area under the curve; ABISA, attention-based image sequence analyzer; CNN, convolutional neural networks; OKC, odontogenic

keratocysts; WSIs, whole slide images.

https://brieflands.com/articles/mejrh-158082

