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Abstract

Background: Uropathogenic Escherichia coli with antibiotic resistance and virulence factors can cause urinary tract infections

(UTIs).

Objectives: This study aimed to evaluate the genetic characteristics of extended-spectrum β-lactamase (ESBL)- and

carbapenemase-producing E. coli (CP-E. coli) isolates.

Methods: This study was conducted in 2020 on 300 urine samples. The antibiotic susceptibility of the isolates was evaluated

using the disk diffusion method. The minimum inhibitory concentrations (MICs) of meropenem (MEM), ceftazidime/avibactam

(CAZ/AVI), and colistin were determined by E-test and microbroth dilution, respectively. Antibiotic resistance genes, virulence

factors, phylogroups, and serogroups were detected using polymerase chain reaction (PCR). The relationship between the

isolates was assessed using pulsed-field gel electrophoresis (PFGE) typing. Sequence type 131 (ST131) isolates were identified by

PCR.

Results: A total of 100 isolates were collected, of which 36% (n = 36) were ESBL-producing E. coli (EP-E. coli), and 33.5% (n = 11/36)

were CP-E. coli. Among the 36 EP-E. coli isolates, 80.5% (n = 29) harbored the bla CTX-M gene, and 19.4% (n = 7) were identified as

ST131. The most prevalent virulence gene was fimH (97.2%; n = 35). The O1 serogroup (36.1%; n = 13/36) was predominant.

Phylogroup typing showed that 52.7% (n = 19/36) of isolates belonged to the B2 phylogroup, and PFGE typing detected 32

singletons and 2 clusters.

Conclusions: Our findings revealed a high prevalence of antibiotic resistance in EP-E. coli isolates, likely due to the excessive

clinical use of antibiotics. Additionally, CP-E. coli isolates belonging to ST131-O25-B2 carried bla NDM and bla OXA-48 genes. Given

the limited treatment options, continuous surveillance is essential to control the spread of these multidrug-resistant (MDR) E.

coli strains.
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1. Background

The Enterobacteriaceae family includes several
important human pathogens, such as Escherichia coli,

Klebsiella pneumoniae, and Salmonella species (1).
Uropathogenic E. coli (UPEC), a specific pathotype of E.

coli responsible for urinary tract infections (UTIs),

encodes various adhesive and secretory virulence
factors (2). Based on genetic characteristics, E. coli is

classified into various phylogroups, with certain
phylogroups, such as B2 and D, known to be associated

with specific pathogenic E. coli strains. Among them,
sequence type 131 (ST131) is a globally recognized high-

risk clone causing significant extraintestinal infections

(3). Antibiotic resistance in E. coli has recently become a
major concern due to its ability to acquire and spread

resistance genes through various mechanisms, such as

β-lactamase production (4). Extended-spectrum β-
lactamase (ESBL)-producing E. coli (EP-E. coli) hydrolyzes

β-lactams, rendering these bacteria resistant to β-lactam
antibiotics (5).

Carbapenemase-producing E. coli (CP-E. coli) can

hydrolyze carbapenem antibiotics, which are often used

as a last-resort treatment for multidrug-resistant (MDR)

bacterial infections (6). The emergence of

carbapenemase-producing UPEC strains, particularly
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ST131, poses a significant public health threat due to

limited treatment options (7). Furthermore, E. coli can

form biofilms, which reduce antibiotic penetration and
facilitate the exchange of virulence and resistance genes

(8). The production of ESBLs and carbapenemases
indicates a high level of antibiotic resistance, forcing

healthcare providers to rely on alternative antibiotics

such as colistin, temocillin, and ceftazidime-avibactam
(CAZ/AVI). However, data on carbapenem-resistant ST131

clones remain limited. Herein, we investigated the
molecular characteristics, antibiotic resistance, and

virulence factors of EP-E. coli, particularly the ST131 clone,

causing UTIs in hospitalized patients.

2. Objectives

This study aimed to evaluate the genetic

characteristics of ESBL- and carbapenemase-producing

E. coli isolates.

3. Methods

3.1. Sample Collection

This study was conducted from January 2019 to

December 2020. A total of 100 clinical E. coli isolates

were collected from 300 urine samples of UTI patients

hospitalized in various wards of a hospital in Tehran.

The samples were inoculated into MacConkey agar and

blood agar (Conda, Spain) and identified using

biochemical tests (9).

3.2. Antibiotic Susceptibility Test

Susceptibility to the following antibiotics was tested

using the disc diffusion method: Nitrofurantoin (NFT;

300 µg), fosfomycin (FO; 30 µg), gentamicin (GEN; 10 µg),

ampicillin (AMP; 10 µg), aztreonam (ATM; 30 µg),

trimethoprim/sulfamethoxazole (SXT; 25 µg),

ciprofloxacin (CIP; 5 µg), nalidixic acid (NAL; 30 µg),

cefotaxime (CTX; 30 µg), ceftazidime (CZA; 30 µg),

imipenem (IPM; 10 µg), meropenem (MEM; 10 µg),

ertapenem (ETP; 10 µg), piperacillin/tazobactam (TZP;

100/10 µg), AMP/sulbactam (SAM; 10/10 µg),

amoxicillin/clavulanic acid (AMC; 20/10 µg), and

amikacin (AMK; 30 µg) (Mast, UK). Klebsiella oxytoca ATCC

13182 and E. coli ATCC 25922 were used as control strains

(10).

3.3. Antibiotic Resistance in Uropathogenic Escherichia coli
Isolates

The minimum inhibitory concentrations (MICs) of

MEM and CAZ/AVI in carbapenem-resistant E. coli isolates

were determined using the E-test method (BioMérieux,

France) (11). Temocillin resistance was evaluated using

the disk diffusion method with a temocillin disk (30 μg;

Liofilchem, Italy). The MIC of colistin (Sigma, USA) was
measured using the broth microdilution method with

colistin sulfate powder (19,000 IU/mg) in 96-well round-
bottom microtiter plates (MTPs). Escherichia coli ATCC

25922 and Proteus mirabilis ATCC 12453 were used as

control strains.

3.4. Extended-Spectrum β-Lactamase and Carbapenemase
Production Determination

Identification of ESBL-producing E. coli (EP-E. coli)

isolates was determined by initial ESBL screening using

the Kirby-Bauer disk diffusion method with CTX and CZA
(30 µg each). The ESBL confirmatory test was conducted

using the combination disk test recommended by the
CLSI, which included CTX/CTX + clavulanic acid and

CZA/CZA + clavulanic acid. Klebsiella pneumoniae ATCC

700603 and E. coli ATCC 25922 were used as control
strains.

Carbapenemase-producing isolates were identified

based on resistance to ETP, IPM, and MEM, with a MIC ≥ 4

µg/mL for MEM. Confirmation of carbapenemase

production was performed using the combined disk

test, which involved a reduction in the zone diameter in

the presence of EDTA in the MEM/MEM ± EDTA (0.5 M)

combination disk test. Additionally, the Carba NP test

was conducted by observing a color change in phenol

red with ZnSO₄ and an IPM-cilastatin tube, following

CLSI guidelines (11).

3.5. Biofilm Formation Assay

Biofilm production was assessed phenotypically

using the MTP assay, as described in previous studies (12,

13). Briefly, an initial culture was prepared in trypticase

soy broth (Merck, USA) containing 1% glucose and

incubated at 37°C for 24 hours. The wells of a 96-well

plate were then washed, and precipitates were fixed

using methanol before being stained with 10% crystal

violet for 15 minutes. Ethanol was subsequently added,

and absorbance was measured at a wavelength of 590

nm using an ELISA reader. The level of biofilm formation

was determined based on the cut-off optical density

(ODc) and the OD of the sample isolate, following

previously established criteria (12-14).

3.6. Amplification of Genes by Polymerase Chain Reaction

DNA was extracted using the boiling method (15).

Polymerase chain reaction (PCR) was performed to

amplify resistance genes (bla  CTX-M, bla  TEM, bla  SHV,

bla NDM, bla VIM, bla IMP, bla KPC, and bla OXA-48), virulence
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Table 1. Primers Used to Detect the ST131 and Resistant Genes

Target Genes and Primers Sequence (5´- 3´) Amplicon Size (bp) Annealing Temp (ºC) Reference

pab B 347 63

(18)

F TCCAGCAGGTGCTGGATCGT

R GCGAAATTTTTCGCCGTACTGT

trp A 427 63

F GCTACGAATCTCTGTTTGCC

R GCAACGCGGCCTGGCGGAAG

rfbO25b 300 60

F ATACCGACGACGCCGATCTG

R TGCTATTCATTATGCGCAGC

bla CTX-M 569 55

(19)F CGCTGTTGTTAGGAAGTGTG

R GGCTGGGTGAAGTAAGTGAC

bla KPC 452 56

(20)

F ATCTGACAACAGGCATGACG

R ACGGCCAACACAATAGGTG

bla NDM 203 56

F GCAGGTTGATCTCCTGCTTG

R ACGGTTTGGCGATCTGG

bla OXA-48 438 56

F GCAGGTTGATCTCCTGCTTG

R ATCAAGTTCAACCCAACCG

mcr-1 309 55

(21)F CGGTCAGTCCGTTTGTTC

R CTTGGTCGGTCTGTAGGG

Abbreviations: bp, base pair; F, forward; R, reverse; ST131, sequence type 131.

genes (piccsgA, iutA, ibeA, vat, hlyA, sat, traT, cdt, cnf1,

kpsMTII, and tcpC), serogroups (O1, O2, O4, O6, O7, O12,

O15, O16, O18, O25, O75, and O157), and phylogroups

(TspE4.C2, chuA, and yjaA), using specific primers, some

of which are listed in Table 1 (16, 17).

3.7. Genetic Relatedness of the Isolates

The chromosomal DNA was digested using the XbaI

enzyme (22). The DNA of the Salmonella serotype

Braenderup strain H8912 was used as a molecular weight

standard. The dendrogram was constructed using Gel

Compare II. Isolates with a Dice Similarity Index ≥ 80%

were considered to belong to the same pulsed-field gel

electrophoresis (PFGE) cluster.

3.8. Molecular Characterization of Sequence Type 131 Clone

The ST131 clones were identified by PCR of ST131-

specific single nucleotide polymorphisms in the mdh
and gyrB genes and confirmed by multi-locus sequence

typing (MLST) (23).

3.9. Statistical Analysis

Statistical analysis was performed using R software

version 3.3.3. Data were interpreted based on frequency

distribution and percentage. A P-value ≤ 0.05 (95%

confidence interval) was considered statistically

significant.

4. Results

4.1. Antimicrobial Resistance Patterns of Isolates

Among the 300 urine samples included in this study,

100 E. coli isolates were detected. The demographic

information and distribution of E. coli isolates are

presented in Table 2. The isolates exhibited resistance

patterns to the following antibiotics: Ampicillin, 92% (n

= 92); CTX, 85% (n = 85); ceftazidime-avibactam, 74% (n =

74); trimethoprim-sulfamethoxazole (SXT), 63% (n = 63);

ATM, 54% (n = 54); NAL, 51% (n = 51); CIP, 49% (n = 49);

ampicillin-sulbactam (SAM), 38% (n = 38); amoxicillin-

clavulanate (AMC), 31% (n = 31); piperacillin-tazobactam
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Table 2. Epidemiological Characteristics of Extended-Spectrum β-Lactamase - and Non-ESBL-Producing Escherichia coli  a

Characteristics Total (N = 100) ESBL (N = 36) Non-ESBL (N = 64) P-Value b

Gender 0.907

Male 52 19 (52.8) 33 (51.5)

Female 48 17 (47.2) 31 (48.5)

Age 0.315

< 40 18 5 (13.8) 13 (20.3)

40 - 60 31 9 (25.0) 22 (34.3)

> 60 51 22 (6.1) 29 (45.3)

Clinical distribution 0.933

Nephrology 40 14 (38.8) 26 (40.6)

Hematology 26 9 (25.0) 17 (26.5)

ICU 18 8 (22.2) 10 (15.6)

Emergency 12 4 (11.11) 8 (12.5)

Other 4 1 (2.7) 3 (4.6)

Prior antibiotic use 0.01

Positive 61 32 (88.8) 29 (45.3)

Negative 39 4 (11.1) 35 (54.6)

Prior hospitalization 0.02

Positive 63 28 (75.6) 35 (55.5)

Negative 37 9 (33.3) 28 (44.4)

Underlying disease 0.937

Diabetes 27 10 (27.7) 17 (26.5)

Cancer 20 8 (22.2) 12 (18.7)

Kidney disease 13 5 (13.8) 8 (12.5 )

Liver disease 12 5 (13.8) 7 (10.9)

Hart disease 8 3 (8.3) 5 (15.6)

Other 4 0 (0.0) 4 (6.25 )

Non Underlying disease 16 5 (13.8) 11 (17.1)

Biofilm formation 26 14 (38.8) 12 (17.2) 0.04

Abbreviation: ESBL, extended-spectrum β-lactamase; ICU, intensive care unit.

a Values are expressed as No. (%).

b P ≤ 0.05 was considered as statistically significant.

(TZP), 26% (n = 26); nitrofurantoin (NFT), 21% (n = 21);

AMK, 20% (n = 20); gentamicin (GEN), 18% (n = 18);

fosfomycin (FO), 18% (n = 18); ETP, 12% (n = 12); IPM, 12% (n

= 12); and MEM, 11% (n = 11).

A total of 36% (n = 36/100) of E. coli isolates were

phenotypically ESBL producers. Among the ESBL-

producing isolates, 38.8% (n = 14/36) and 33.3% (n = 12/36)

were resistant to temocillin and carbapenems,

respectively. Additionally, 30.5% (n = 11/36) were classified

as CP-E. coli, with a MIC ≥ 4 µg/mL against MEM.

Furthermore, 25% (n = 9/36) and 16.6% (n = 6/36) of the

isolates were resistant to CAZ/AVI with an MIC ≥ 256

µg/mL and colistin with an MIC > 4 µg/mL, respectively.

The E. coli isolates demonstrated multiple resistance

to cephalosporins, sulfonamides, and fluoroquinolones,

with 48% (n = 48/100) classified as MDR. Prior antibiotic

consumption and hospitalization were significant risk

factors for the isolation of ESBL-producing E. coli isolates

(P = 0.01 and P = 0.02, respectively). Notably, there was

no association between age, gender, different wards,

and underlying diseases with the isolation of ESBL-

producing E. coli (P > 0.05).

4.2. Prevalence of Extended-Spectrum β-Lactamase and
Carbapenemase Genes

Among the 36 ESBL-producing E. coli isolates

surveyed, 80.5% (n = 29), 52.7% (n = 19), and 47.2% (n = 17)

harbored the bla  CTX-M, bla  TEM, and bla  SHV genes,

respectively. All 100% (n = 11) of the CP-E. coli isolates

carried the bla  CTX-M gene and were ESBL producers.

Among the 11 CP-E. coli isolates, 54.5% (n = 6) and 18% (n =
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Figure 1. Dendrogram of extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolates based on pulsed-field gel electrophoresis (PFGE) patterns after digestion with

enzyme XbaІ with presents the date of isolation, ward, and sequence type 131 (ST131) clone.

2) harbored the bla  NDM and bla  OXA-48 genes,

respectively. Additionally, 27.2% (n = 3) of the isolates

harbored both the bla NDM and bla OXA-48 genes. None of

the isolates carried the bla KPC, bla IMP, and bla VIM genes.

4.3. Analysis of Isolates by Pulsed-Field Gel Electrophoresis

Pulsed-field gel electrophoresis analysis of the 36

extended-spectrum beta-lactamase-producing E. coli (EP-

E. coli) isolates is illustrated in Figure 1. The analysis

demonstrated 34 pulsotypes, numbered from P1 to P34,

which were classified into 32 singletons and 2 clusters,

each consisting of two strains.

4.4. Results of Biofilm Formation

Overall, 26% (n = 26/100) of the isolates were biofilm

producers. As represented in Table 2, biofilm formation

had a significant association with EP-E. coli isolates (P =

0.04). Among the EP-E. coli isolates, 14 were biofilm

producers, with 28.5% (n = 4/14) being strong biofilm

producers. However, 57.1% (n = 8/14) and 14.2% (n = 2/14)

were moderate and weak biofilm producers,

respectively.

4.5. Recognition of Phylogroups and Serogroups

The majority of the EP-E. coli isolates belonged to the

phylogenetic groups B2 (52.7%; n = 19/36) and D (33.3%; n

= 12/36), followed by groups B1 (8.3%; n = 3/36), A (2.7%; n =

1/36), and F (2.7%; n = 1/36). Additionally, serogroup O1

was detected in 36.1% (n = 13/36) of the isolates, followed

by serogroups O25 (22.2%; n = 8/36), O75 (13.8%; n = 5/36),
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Table 3. Characteristics of Carbapenemase-Producing Escherichia coli Isolates

ESBL MEMMIC (µg/mL) CTX MIC (µg/mL) CAZ/AVI MIC (µg/mL) ColistinMIC (µg/mL) Temocillin Sensitivity Resistance Genes Phyl/Sero Sequence Typing

Yes 64 32 256 0.5 R CTX-M/OXA-48/NDM B2/O25 ST131

Yes 16 32 256 16 R CTX-M/NDM B1/O1 Non-ST131

Yes 8 32 256 32 R CTX-M/NDM B2/O1 Non-ST131

Yes 8 32 256 0.5 S CTX-M/NDM B2/O25 ST131

Yes 8 32 256 1 R CX-M/OXA-48/NDM B2/O25 ST131

Yes 128 32 256 16 R CTX-M/NDM B2/O1 Non-ST131

Yes 4 32 0.1 0.5 R CTX-M/OXA-48 B2/O1 Non-ST131

Yes 128 32 256 0.5 R CTX-M/OXA-48/NDM B2/O25 ST131

Yes 4 32 0.1 1 S CTX-M/OXA-48 B1/O1 Non-ST131

Yes 4 32 256 32 R CTX-M /NDM B2/O1 Non ST131

Yes 4 32 256 0.5 R CTX-M/NDM B2/O16 Non-ST131

Abbreviations: ESBL, extended-spectrum β-lactamase; CAZ/AVI, ceftazidime/avibactam; ST131, sequence type 131.

O18 (8.3%; n = 3/36), O15 (5.5%; n = 2/36), O4 (2.7%; n = 1/36),

and O16 (2.7%; n = 1/36). The serogroup of 8.3% (n = 3/36)

of the isolates could not be detected.

4.6. Identification of Virulence Factor Genes

Among the EP-E. coli, 97.2% (n = 35), 86.1% (n = 31), 83.3%

(n = 30), 80.5% (n = 29), 33.3% (n = 12), 30.5% (n = 11), and

27.7% (n = 10) carried the fimH, iutA, fyuA, inh, traT, papП,

and csgA genes, respectively. In addition, 30.5% (n = 11),

27.7% (n = 10), 25% (n = 9), 19.4% (n = 7), 16.6% (n = 6), 13.8%

(n = 5), 13.8% (n = 5), and 8.33% (n = 3) carried the fimA,

ompT, usp, sfa/foc, hly, cnf-1, afa, and iroN genes,

respectively.

4.7. Detection of Sequence Type 131Clone

A total of 19.4% (n = 7/36) of the EP-E. coli isolates were

identified as ST131. All the isolates (100%; n = 7/7) were

detected as the O25b-ST131 clone, with 57.1% (n = 4/7)

being carbapenemase-producing isolates containing

the bla  CTX-M, bla  NDM, and bla  OXA-48 genes (Table 3).

Most of the carbapenemase-producing E. coli isolates

belonged to serogroup O1, and three of these isolates

containing the bla NDM and bla OXA-48 genes belonged to

O25 (ST131 clone).

5. Discussion

Escherichia coli is one of the most common causative

agents of UTIs worldwide, and certain strains of E. coli,

owing to attributes such as high virulence factors and
significant antibiotic resistance, are rapidly spreading

globally, like the ST131 clone (2). This study found a high

prevalence of MDR E. coli and observed that the
antibiotic resistance patterns of these isolates were

similar to those reported in other studies conducted in

different clinical settings (24). Prior antibiotic

consumption and hospitalization were significant risk

factors for the isolation of MDR E. coli isolates. Several

investigations have reported a connection between

previous antibiotic use and the isolation of MDR strains

(25, 26).

Temocillin and carbapenems are two options for

treating EP-E. coli. temocillin is stable against ESBLs and

AmpC β-lactamase and is effective in the treatment of

UTI infections (27). In our study, temocillin was active

against 61.2% of ESBL-producing isolates; therefore, the

susceptibility of the isolates to this antibiotic can be

considered an alternative treatment for such complex

infections. Carbapenems are typically used to treat

complicated bacterial infections with EP-E. coli isolates,

and the percentage of resistance to these antibiotics

varies across studies and has been rapidly increasing,

particularly in developing countries, due to the

excessive use of this class of antibiotics (28). The

percentage of resistance to carbapenems in our study

was high (30.6%), similar to some developing countries

(29, 30).

Colistin is often used to treat infections caused by

carbapenem-resistant isolates (31). In this study, the

majority of carbapenem-resistant E. coli isolates were

resistant to most available antibiotics; therefore, in

some cases, colistin is often used for treating infections

caused by these isolates. The prevalence rate of colistin

resistance varies in different countries, with the highest

rate (19%) found in Thailand and the lowest rate (0.8%)

observed in South Korea (32-34). Colistin resistance in

our study (16.6%) indicated the high use of this

antibiotic in the treatment of carbapenem-resistant

isolates in Iran due to limited new antibiotic options.
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Ceftazidime-avibactam is recognized as a global new

treatment alternative for carbapenem-resistant

infections (35). Although this antibiotic is not approved

in our country, its resistance has been recognized.

Resistance to CAZ/AVI in carbapenem-resistant isolates

has increased to 71.4% in countries where CAZ/AVI

treatment is available, but the high rate (25%) of CAZ/AVI

resistance in our study suggests that the emergence of

its resistance is not related to previous CAZ/AVI

treatment (36). Based on the PFGE pattern in the present

study, similar genotypes were isolated from hospital

wards on different dates, indicating that some resistant

strains have a common origin that can disseminate

across hospital wards. Therefore, the hospital infection

control committee is required to identify the origin of

these resistant isolates and employ effective health

strategies to decrease the spread of resistant bacteria in

the hospital (37).

As emphasized in studies, the intensive care unit

(ICU), where the ST131 clone with a similar pattern was

collected, is a major ward in disseminating resistant

bacterial strains because patients are hospitalized in

this ward for a long time, and they can be a source of

infection. Hence, the hospital infection control

committee must pay more attention to controlling the

dissemination of infection in hospitals via patients,

food, water, doctors, staff, and beds by surveillance and

finding the source of infection. The prevalence of ESBL

genes can vary depending on geographical locations,

healthcare settings, and the population being studied

(38). The ESBL enzymes, which hydrolyze cephalosporins

(CTX, CZA, ceftriaxone, cefuroxime, and cefepime) and

monobactams (ATM), are becoming a major challenge

for the treatment of pathogenic bacteria (5). However,

similar to a previous study conducted in our country,

the prevalence of bla CTX-M is high and noticeable (39).

Carbapenemase genes are responsible for encoding

enzymes that can break down and inactivate

carbapenem antibiotics, which are considered last-

resort antibiotics for treating severe bacterial infections.

The prevalence of carbapenemase genes among

carbapenem-resistant bacteria is influenced by factors

such as antibiotic use, infection control practices, and

the dissemination of resistant strains (40). In some

parts of the world, the prevalence of carbapenemase

genes can be relatively high, particularly in countries

with high rates of antibiotic use and inadequate

infection control measures. For instance, certain

countries in Southeast Asia, the Middle East, and regions

of Europe have reported high rates of bacteria

producing carbapenemase (28, 41). It is worth

mentioning that surveillance data on the prevalence of

carbapenemase genes can vary over time and across

different studies (30, 42). Local and regional surveillance

programs, as well as molecular testing methods, are

crucial for monitoring the prevalence and spread of

carbapenemase genes.

In our study, the most frequent carbapenemase gene

was bla  NDM, which has been shown to cause infections

with a high mortality rate (43). The biofilm formation in

E. coli isolates allows bacteria to survive, persist, and

cause infections. Based on available evidence, the global

prevalence rate of biofilm formation varies, ranging

between 56% and 100% (44). This observation indicates

that various factors, including different geographical

areas, low-level hygiene, and varying methods, can affect

biofilm formation (44). In our study, similar to other

surveys (45, 46), there was an association between

biofilm formation and antibiotic resistance (P = 0.04),

which could arise from antibiotic misuse and its

administration without prescription in our country.

In our study, contrary to Rasoulinasab et al.'s study

(47), fimH and iutA were the predominant virulence

factors, while iroN was the least prevalent. This variation
in gene prevalence rates may stem from the diverse

sources of the samples. Similar to the review article in

our country, which demonstrated that B2 and D

phylogroups are predominant, in this study, B2 was the

predominant phylogroup (48). It has been reported that
the prevalence rate of phylogroups varies in the

phylogroup pattern of E. coli, which could be ascribed to

the source of isolates (49). However, the high prevalence

rate of phylogroup B2 in our study was noticeable.

One of the important sequence types with high

antibiotic resistance in EP-E. coli isolates is the ST131

clone, a causative agent of UTIs. There are different

reported rates of this clone worldwide, which is

probably due to varying times of studies conducted,

geographical locations, and sample types (50-52). In our

study, the isolation of bla  OXA-48/bla  NDM-carrying ST131

isolates is a warning of the potential for increased

dissemination of carbapenem resistance genes in our

country and globally.

5.1. Conclusions

Our findings demonstrated a high prevalence of

virulence genes and antibiotic resistance in E. coli, which

has been transferred between hospitalized patients. In

the present study, CP-E. coli was found to carry bla  NDM

and bla OXA-48 genes belonging to ST131 O25/B2 with high

antibiotic resistance, posing a risk for treatment and

dissemination of resistant genes in a hospital.

Understanding the characteristics of CP-E. coli in the

https://brieflands.com/articles/jjm-156768
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hospital and community over different years with

regard to antibiotic resistance and virulence, through

rapid molecular detection and phylogenetic monitoring

of such strains, can be helpful in limiting the

dissemination of antibiotic resistance in the hospital.
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