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Abstract

Background: Ovarian cancer is the most common lethal cancer of the female reproductive system and is often diagnosed in

advanced stages. The Sortilin 1 (SORT1) gene is overexpressed in ovarian cancer cells. Methyl protodioscin, an herbal bioactive

compound, has significant antitumor activities.

Objectives: Considering the necessity of identifying new medicinal agents and treatments in ovarian cancer, this project

investigated the effects of methyl protodioscin on the expression of the SORT1 gene and the response to chemotherapy in the

ovarian cancer cell line (A2780 S).

Methods: The viability of ovarian cancer cells (A2780) after treatment with methyl protodioscin (800, 400, 200, 100, 50, 25,

12.5, 6.25, and 3.12 µM) was evaluated by MTT assay, trypan blue staining, and lactate dehydrogenase activity measurement. The

expression level of the SORT1 gene was investigated by real-time PCR. The effect of simultaneous treatment with methyl

protodioscin and the chemotherapy drug carboplatin on cell viability was measured.

Results: After 24, 48, 72, and 96 hours of treatment, methyl protodioscin significantly decreased cell viability in a

concentration- and time-dependent manner (P < 0.05). After 24 hours, treatment with the IC50 concentration of methyl

protodioscin (14.5 µM) caused a significant decrease in SORT1 expression in ovarian cancer cells by 33% (P < 0.05). The

combination of methyl protodioscin with carboplatin decreased cell viability with a synergistic effect.

Conclusions: Methyl protodioscin had an inhibitory effect on the survival of ovarian cancer cells in a concentration- and time-

dependent manner and reduced the expression of the SORT1 gene. Additionally, this herbal compound synergistically increased

the toxicity of carboplatin.
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1. Background

Due to difficulties in early diagnosis, ovarian cancer

is associated with a high mortality rate in women (1, 2),

with a 5-year survival rate of less than 30% (3, 4).

Cisplatin or carboplatin are the most widely used

chemotherapeutic agents against ovarian cancer.

Ovarian cancer inevitably acquires resistance to these

drugs when cancer cells become insensitive to the

effects of platinum-based chemotherapy, leading to

treatment failure and disease progression. Cancer

recurrence after initial chemotherapy is very common

in this cancer. One of the challenging issues in the

successful treatment of ovarian cancer is the

development of drug resistance (5-9).

Sortilin 1 (SORT1) is a multifunctional protein involved

in cancer development. The expression of the SORT1 gene

is increased in human tumors, including ovarian cancer,

and its siRNA-mediated gene silencing in ovarian cancer

cells leads to increased apoptosis and decreased

proliferation. This suggests that SORT1 is a potential

therapeutic target for tumor therapy. Some studies have

shown that inhibition of SORT1 expression and function

can slow the growth of tumors (10).
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Methyl protodioscin, an herbal bioactive compound,

was extracted from the rhizome of Dioscorea collettii var.

hypoglauca (Dioscoreaceae) and shows some medicinal

potential. Its anticancer activities were demonstrated in

in vitro and in vivo studies. However, the underlying

anti-cancer mechanisms remain unknown. Additionally,

a preclinical pharmacodynamic study showed that 80

mg/kg i.v. of methyl protodioscin had no serious side

effects (11).

2. Objectives

Considering the necessity of identifying new

treatment methods, this study was designed to

determine the effects of methyl protodioscin on SORT1

gene expression and the response to chemotherapy in

ovarian cancer cells.

3. Methods

3.1. Cell Culture

The A2780s cell line was prepared from the Pasteur

Institute, Iran, and cultured in RPMI-1640 medium

(Gibco, Germany) containing 10% fetal bovine serum

(FBS) and 1% antibiotic. The cells were maintained in a

37°C incubator with 5% CO2. Passage was performed after

the cells reached a concentration level of 70%.

3.2. Viability Measurement

The cells were cultured in 96-well plates and treated

with concentrations of 0, 0.09, 0.18, 0.37, 0.75, 1.5, 3, 6,

and 12 µM methyl protodioscin for 24, 48, 72, and 96

hours. For the trypan blue assay, after trypsinizing and

separating the cells from the surface, the cell suspension

(about 106 cells/mL) was mixed (ratio of 1:1) with trypan

blue (Sigma, USA) 4% solution. After 2 minutes, cells were

checked using a neobar lam and an inverted phase

optical microscope. Living cells have clear cytoplasm,

while dead cells have dark blue cytoplasm. The

percentage of cell viability was calculated by dividing

the number of unstained cells by the total number of

cells.

For the MTT assay, about 10 µL of MTT solution (0.5

mg/mL) (Sigma, USA) was added to each well and

incubated for 3 hours in the dark at 37°C. Then, DMSO

(200 µL) was added to each well, and the absorbance of

the wells was read at 570 nm by an ELISA reader. A row of

plate wells without drugs was considered as a control.

The viability percentage was calculated from the

following equation:

To investigate the effect of methyl protodioscin on

carboplatin toxicity, cells were first treated with 800,

400, 200, 100, 50, 25, 12.5, and 6.5 µM of carboplatin for

24 hours. After measuring viability and calculating the

IC50 using GraphPad Prism 6.0 (GraphPad Software,

USA), combined treatment was performed at IC50 values

and two concentrations higher and two lower than the

IC50. CompuSyn software (ComboSyn Inc, USA) was used

to analyze the cytotoxicity data to determine synergy,

additivity, and antagonism between methyl

protodioscin and carboplatin.

3.3. Cytotoxicity Assay

The cells were cultured in 96-well plates and treated

according to the procedures described in the viability

assay. Cytotoxicity testing was performed using the

Pierce LDH assay kit (Sigma Aldrich, USA) according to

the manufacturer’s instructions. The cytotoxicity of the

extract was calculated using the following formula.

3.4. Gene Expression Analysis

After treating the cells and collecting them with

trypsin/EDTA solution (Gibco, Germany), RNA extraction

was performed according to the TRIZOL reagent kit (Life

Technologies Invitrogen, USA). For the quantitative

analysis of the extracted RNA, the optical absorption

ratio of 260/280 and 230/260 nm was obtained using a

NanoDrop. The quality of RNA was tested with agarose

gel electrophoresis. The cDNA synthesis was done

according to the kit protocol (Bioneer, Korea), and the

quality of the synthesized cDNA was verified using a

nanodrop device. For real-time PCR, SYBR Green master

mix (Takara, Japan) was used. Gene expression was

measured by the 2-ΔΔCt method. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was used as the

(Cell viability Abs test control cells)  ×  100 
cells

Abs

=  Cell viability (%)

% Cytotoxicity  =

  ×  100
(Experimental OD490 –  Control OD490)

Maximum lactate dehydrogenase 

(LDH) releas OD490
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housekeeping gene. The sequence of primers used is as

follows.

(1) Glyceraldehyde 3-phosphate dehydrogenase:

- Forward: TCCTCCACCTTTGACGCTG

- Reverse: CACCACCCTGTTGCTGTAGC

(2) Sortilin 1:

- Forward: TCAGAGCCGAATGCCGTAG

- Reverse: CCTTCCAGCATCTTTGTCCAG

3.5. Statistical Analysis

Data were shown as mean ± SE of three independent

tests (each conducted three times, with each time in

technical triplicate). Statistical analysis was conducted

using SPSS software version 16.0 (SPSS Inc., USA) and a

one-way ANOVA test. P-values below 0.05 were

considered statistically significant.

4. Results

4.1. Methyl Protodioscin Effects on Cell Viability

After treatment, the morphology of cells changed,

becoming small, round, and granular. The effects of

different concentrations of methyl protodioscin on cell

viability after 24, 48, 72, and 96 hours were tested using

trypan blue and MTT assays, as shown in Figure 1A and B.

Treatment with methyl protodioscin significantly

decreased viability after 24 hours at concentrations of

0.75, 1.5, 3, 6, and 12 μM (P < 0.05). After 48, 72, and 96

hours, the reduction in cell viability was significant at

all concentrations (P < 0.05). This decrease occurred in a

concentration- and time-dependent manner. The IC50

values calculated in the trypan blue test were 7.17 ± 0.12,

3.16 ± 0.17, 0.99 ± 0.08, and 0.31 ± 0.05 μM, and in the

MTT test were 14.58 ± 0.55, 4.05 ± 0.01, 0.75 ± 0.08, and

0.38 ± 0.01 μM for 24, 48, 72, and 96 hours, respectively.

4.2. Cytotoxic Effects of Methyl Protodioscin

Methyl protodioscin exhibited cytotoxicity against

ovarian cancer cells in a concentration- and time-

dependent manner. After 24 hours, significant toxicity

was observed at concentrations of 3, 6, and 12 μM. After

48 hours, significant toxicity was observed at

concentrations of 0.75, 1.5, 3, 6, and 12 μM. After 72 hours,

significant toxicity was observed at concentrations of

0.18, 0.37, 0.75, 1.5, 3, 6, and 12 μM. After 96 hours,

significant toxicity was observed at all concentrations

used (P < 0.05) (Figure 2).

4.3. Methyl Protodioscin Effects on Sortilin 1 Gene Expression

Treatment with the IC50 concentration of methyl

protodioscin (14.5 µM) after 24 hours caused a

significant decrease in SORT1 expression in ovarian

cancer cells by 33% (P < 0.05) (Figure 3).

4.4. Carboplatin Effect on Cell Viability

The effects of different concentrations of carboplatin

on cell viability after 24 hours were measured by the

MTT test and are shown in Figure 4. At concentrations of

25, 50, 100, 200, 400, and 800 µM, a significant decrease

in viability was observed (P < 0.05). This decrease

occurred in a concentration-dependent manner. The

IC50 value was determined to be 228.90 ± 16.10 μM.

4.5. Carboplatin and Methyl Protodioscin Combination Effect
on Cell Viability

The dose-effect diagram showed that the

combination of these two agents has more toxic effects

on cancer cells than either one alone. The Combination

Index (CI) values calculated for all five treatments were

less than 1, indicating a synergistic interaction between

carboplatin and methyl protodioscin in reducing cell

viability. Dose Reduction Index (DRI) values for both

carboplatin and methyl protodioscin were greater than

1, indicating a dose reduction to produce a specific

therapeutic effect in both cases. Finally, the isobologram

plot was drawn. In the isobologram diagram, the

concentrations of carboplatin and methyl protodioscin

alone and the simultaneous treatment that cause a

decrease of 50, 75, and 90 percent of the cell population

are shown. In this diagram, the placement of compound

points on the chord, below, and above it respectively

indicates additive, synergistic, and antagonistic

interactions (Figure 5).

5. Discussion

The results of the present study showed that methyl

protodioscin had a lethal effect on ovarian cancer cell

lines. By increasing the concentration of methyl

protodioscin, the percentage of cell viability decreased

significantly. Additionally, with the increase in the

duration of treatment, the percentage of live cells

decreased significantly compared to the control group.

Previous studies have shown that dioscin had

significant inhibitory effects on HL-60 human leukemia

cell growth, differentiation, and apoptosis. Moreover,
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Figure 1. The effect of methyl protodioscin on the viability of ovarian cancer cells after 24, 48, 72 and 96 (h) was A, evaluated by trypan blue staining; and B, MTT test. * P < 0.05, **
P < 0.005, and *** P < 0.001 compared to the control.

Figure 2. The cytotoxic effect of methyl protodioscin on the ovarian cancer cells after 24, 48, 72 and 96 (h) *** P < 0.001 compared to the control.

dioscin was found to affect many cancer cells (12).

Methyl protodioscin also showed cytotoxic effects on

solid tumor cell lines. An analysis utilizing the

computer program COMPARE indicated that no

compounds in the NCI Anticancer Drug Screen database

have similar cytotoxicity patterns to methyl

protodioscin, suggesting a potential new mechanism of

anticancer action (13). Methyl protodioscin exhibited

anti-mitotic activity and induced G2/M arrest and

apoptosis in HepG2 cells via cyclin B1 and Bcl-2

expression reduction and Bax expression induction (14).

Treatment of oral cancer cells with methyl protodioscin

induced apoptosis and could also induce autophagy

(15). Protodioscin inhibits cell viability and induces

mitochondrial loss of function in apoptosis (16). Methyl

protodioscin inhibits proliferation and increases

apoptosis in pancreatic cancer (11). In cervical cancer

cells, methyl protodioscin induces cell cycle arrest and

apoptosis (17).

Despite recent advancements in cancer therapy, the

life span and quality of life of patients with ovarian

cancer remain unsatisfactory due to the development of

drug resistance. Thus, developing new strategies to

overcome this problem is needed. Recently, the use of

drug combinations has been employed for lethal

diseases such as cancer. The major purpose of this

strategy is to achieve a synergistic therapeutic effect,

reduce the dosage and toxicity, and minimize or delay
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Figure 3. The effect of methyl protodioscin on SORT 1 gene expression in ovarian cancer cells after 24 (h). *** P < 0.001 compared to the control.

Figure 4. The effect of carboplatin on the viability of ovarian cancer cells after 24 (h)* P < 0.05 and *** P < 0.001 compared to the control.

the development of drug resistance. Today, the use of

several anticancer drugs from different groups is widely

practiced in cancer treatment (18).

Methyl protodioscin significantly increases the

cytotoxicity of carboplatin, with a CI between 0.69 and

0.92, indicating a synergistic effect across all combined

concentrations used in this project. The average CI for

all tests performed was 0.87, highlighting the overall

synergistic effect of the combination of methyl

protodioscin and carboplatin on the ovarian cancer cell

line. This combination led to a dose reduction for

carboplatin, which is clinically valuable as it reduces the

general side effects of chemotherapy. Real-time PCR

results showed that treatment of cancer cells with the

https://brieflands.com/articles/jcrps-157134
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Figure 5. Diagram of A, effect-dose; B, Combination Index (CI); C, Dose Reduction Index (DRI); and D, isobologram for ovarian cancer cells after 24 hours of treatment with
carboplatin, methyl protodioscin and a combination of two agents. Dose A: Carboplatin concentration, and dose B: Methyl protodioscin concentration.

IC50 concentration of methyl protodioscin for 24 hours

significantly reduced SORT1 gene expression compared

to the control group.

The first molecular characterization of SORT1 showed

that it is expressed in the heart, brain, placenta, skeletal

muscle, testis, thyroid, and spinal cord (19). The SORT1

gene expression was increased in ovarian cancer tissues

compared to non-malignant ovarian tissues (20, 21).

These results may suggest the possible role of SORT1 in

ovarian tumorigenesis. The potential role of

overexpressed SORT1 in ovarian cancer cells is an

interesting topic for research. It has previously been

proven that decreased SORT1 expression in ovarian

tumors leads to apoptosis induction and reduced

proliferation of cancer cells, so its decreased expression

induced by methyl protodioscin in this study may be

responsible for its anti-ovarian cancer effect.

One of the limitations of this study is the lack of

examination of SORT1 siRNA/overexpression

experiments to validate its functional role in methyl

protodioscin-induced chemosensitization. Currently, it

is unknown whether methyl protodioscin synergizes

with carboplatin in SORT1-silenced cells.

5.1. Conclusions

Methyl protodioscin had an inhibitory effect on the

viability of ovarian cancer cells in a concentration- and

time-dependent manner and reduced the expression of

the SORT1 gene. The present study also showed that this

herbal compound synergistically enhances the

chemotherapy effects of carboplatin. The results suggest

that methyl protodioscin has a therapeutic effect on

ovarian cancer cells and holds promise for use in the

development of anti-ovarian cancer drugs.
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