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Abstract

Background: The incidence of depression has increased significantly during the COVID-19 pandemic. Some individuals

infected with COVID-19 develop persistent neurological and neuropsychiatric symptoms approximately 12 weeks after the acute

infection, a condition known as long COVID-19 syndrome. However, the underlying pathogenesis remains unclear. Glial fibrillary

acidic protein (GFAP), creatine kinase (CK), and lactate dehydrogenase (LDH) are proteins abundant in the central nervous

system (CNS), playing important roles in neuronal energy homeostasis.

Objectives: This study aimed to investigate the correlation between serum GFAP, CK, and LDH levels and depression in patients

with long COVID-19 syndrome.

Methods: This cross-sectional study involved 150 patients (75 males and 75 females). The Beck Depression Inventory-II (BDI-II)

was used, along with standardized peripheral serum assessments. Serum GFAP, CK, and LDH levels were measured using

customized direct ELISA. Data were matched by age and sex, and analyzed using Spearman non-parametric tests to assess the

correlation between variables.

Results: The serum level of GFAP was significantly higher in both males and females with severe depression compared to those

with mild depression (282 ± 3 pg/mL, 280 ± 2.9 pg/mL, P = 0.001). The mean serum CK level was 239 ± 24.05 U/L in males and 142 ±

18.08 U/L in females (P < 0.0001). Furthermore, a significant positive correlation was found between CK serum levels and Beck

scores (r = 0.33, 95% CI = 0.176 to 0.469), with a similar pattern observed for LDH (r = 0.22, 95% CI = 0.042 to 0.358). GFAP, CK, and

LDH levels were higher in male patients.

Conclusions: This study identified potential neurobiological mechanisms in CNS-related long COVID syndrome, suggesting

that elevated astrocyte activity, along with increased serum CK and LDH levels, may contribute to the neurobiological issues

seen in depressed long COVID survivors. Men appeared to be more susceptible to these changes than women. Further research is

essential.
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1. Background

The incidence of depression has surged dramatically
during the COVID-19 pandemic (1). Energy metabolism

plays a pivotal role in the physiological functions of the

nervous system, including neuroplasticity,
neurotransmitter release, and neural differentiation.

Disorders in energy metabolism are among the primary
causes of neuropsychiatric diseases (1). Glucose serves as

the main energy source for the brain through

mitochondrial phosphorylation (2). Furthermore,

astrocytes play crucial roles in brain metabolism and
neurotransmitter homeostasis (3). Astrocyte activity is

reflected in the upregulation or downregulation of glial
fibrillary acidic protein (GFAP), which is primarily

expressed in astrocytes and detectable in cerebrospinal

fluid (CSF) and bloodstream (3). Its expression fluctuates
in psychological disorders (4).

SARS-CoV-2, the virus responsible for COVID-19, has a

high affinity for neurons and glia in the central nervous

system (CNS) through binding to the angiotensin-
converting enzyme 2 (ACE2) receptor (5). The virus can
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lead to neuroinflammation, adaptive immunity, and

autoimmunity, affecting various neurological and

psychiatric aspects of COVID-19 (5). Astrocytes and
microglia maintain homeostasis at different biological

levels by transporting ions, uptaking neurotransmitters,
scavenging reactive oxygen species, and supporting

glycogen synthesis and storage (6, 7).

Lactate utilization is emerging as a novel regulatory

link in brain metabolism. Lactate dehydrogenase (LDH)

catalyzes the conversion of lactate to pyruvate and

facilitates glycolysis (8). Dysregulation or decreased LDH

activity may lead to lactate accumulation, as observed in

neurodegenerative disorders and post-stroke

depression (9, 10). While substantial evidence focuses on

decreased LDH levels in depressive patients, the

association between lactate metabolism and depression

remains elusive. Additionally, creatine, a basic energy

source for cellular physiology, plays a critical role in

cellular metabolism via ATP replenishment. Creatine

kinase (CK), discovered in muscle fibers in 1927, is vital

in maintaining cellular energy homeostasis by restoring

ATP reserves (11-13). Creatine kinase is present in the

cytosol and mitochondria of various cells and is

released into the blood circulation through the

lymphatic system under resting conditions (14-16).

Elevated CK levels are commonly observed in COVID-19

patients (17).

2. Objectives

However, the relationship between serum levels of

GFAP, CK, and LDH and the development of depression

in COVID-19 patients remains unclear. Thus, this study

aims to investigate the potential association between

astrocyte activation, serum CK and LDH levels, and the

severity of depressed mood in individuals diagnosed

with COVID-19.

3. Methods

3.1. Subjects

In this cross-sectional study, a total of 150 patients

with confirmed COVID-19 infection (75 males and 75

females) were examined. Venous blood samples (6 mL)

were collected from all participants in a fasting state

(between 6:30 am and 9:00 am) within the first 24 hours
after admission. Various biochemical factors were

measured in the blood samples. All subjects had

experienced symptoms for 13 - 16 weeks following their

initial COVID-19 infection and were referred to Imam

Khomeini Hospital in Ilam, western Iran, during 2022

and 2023. The subjects were matched for both sex and

age to ensure comparability across the groups.

3.2. Inclusion Criteria

The study included COVID-19 patients aged between
32 and 42 years. All subjects exhibited symptoms such as

fatigue, shortness of breath, and neurological and

cognitive dysfunction, which significantly impacted
their daily lives. These symptoms persisted for at least

two months and could not be attributed to any other
diagnosis. The onset of this condition occurred

approximately three months after the subjects tested

positive for SARS-CoV-2.

3.3. Exclusion Criteria

Subjects with any metabolic diseases known to affect

CK and LDH levels or with a history of head trauma prior

to admission were excluded from the study.

3.4. Glial Fibrillary Acidic Protein Quantification

GFAP levels were measured in the serum of all

subjects using a Human GFAP ELISA Kit, following the

manufacturer's protocol. The detection range of the

assay was 15.63 - 1000 pg/mL. After the enzyme reaction

produced a yellowish color, a stop solution was added to

terminate the reaction, and the optical density was

measured spectrophotometrically at 450 nm.

3.5. Creatine Kinase Quantification

Serum CK levels were measured using a standard

ELISA technique with a CK-NAC (CPK) quantification kit

from Biorex Fars, following the manufacturer's protocol.

One volume of R2 reagent was mixed with five volumes

of R1 reagent. Then, 40 µL of the samples was added to

1000 µL of the working reagent, and the absorbance was

read spectrophotometrically at 340 nm after two

minutes. The kit's minimum detectable activity was 2

U/L. Normal CK levels range from 55 - 170 U/L in males

and 30 - 135 U/L in females.

3.6. Lactate Dehydrogenase Quantification

Serum LDH levels were measured using the LDH assay

kit from Biomed, following the manufacturer's

instructions. Four units of R1 reagent were mixed with

one unit of R2 reagent, and the final solution was

measured photometrically at 340 nm. The kit's

minimum measurable sensitivity was 40 U/L, with a

maximum detection level of 1200 U/L. The normal

reference range for LDH is 140 - 280 U/L for both males

and females.
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3.7. Beck Depression Inventory-II

Depressive status in patients was assessed using the

Beck Depression Inventory-II (BDI-II), a 21-item
questionnaire (18). The scoring interpretation is as

follows: A score of 0 - 13 indicates no depression, 14 - 19
reflects mild depression, 20 - 28 corresponds to

moderate depression, and 29 - 63 represents severe

depression.

3.8. Statistical Analysis

Data analysis was conducted using Prism GraphPad

software. A significance level of P < 0.05 was set with a

95% confidence interval. The Kolmogorov-Smirnov test
and Shapiro-Wilk test were applied to assess the

normality of data distribution. Spearman non-
parametric tests were utilized to evaluate the

correlation between variables. Data are consistently

presented as mean ± SEM throughout the study.

4. Results

The mean age of the participants was 36.6 ± 0.67

years in males and 35 ± 0.76 years in females. Serum

GFAP levels were measured in all subjects. In males, the
mean GFAP levels were 260 ± 3 pg/mL for mild

depression, 269 ± 1.2 pg/mL for moderate depression,

and 282 ± 3 pg/mL for severe depression. In females,

GFAP levels were 249 ± 2.1 pg/mL for mild depression, 258

± 2.2 pg/mL for moderate depression, and 280 ± 2.9
pg/mL for severe depression. GFAP levels were

significantly higher in severe depression compared to
mild depression (Figure 1 P = 0.001). Additionally, GFAP

levels were significantly higher in males than females

with mild and moderate depression (P < 0.001).

The BDI-II scores were 16.15 ± 1 in males and 13.67 ± 1.05

in females, with significantly higher scores observed in

males compared to females (Figure 2 P = 0.016). No

significant correlation was found between Beck scores

and the age of participants (r = -0.11, 95% CI = -0.2704 to

0.555).

The mean serum CK levels in COVID-19 patients are

shown in Figure 3A. CK levels were 142 ± 18.08 U/L in

females and significantly higher at 239 ± 24.05 U/L in

males (P < 0.0001). Serum LDH levels were 423.6 ± 14.99

U/L in females and significantly increased to 516 ± 22.01

U/L in males (P = 0.0006, Figure 3B).

Furthermore, there was a significant positive

correlation between CK levels and Beck scores (r = 0.33,

95% CI = 0.176 to 0.469, Figure 4A). Similarly, there was a

significant positive correlation between LDH serum

levels and Beck scores in COVID-19 patients (r = 0.22, 95%

CI = 0.042 to 0.358, Figure 4B), indicating a strong

relationship between depression severity and serum CK

and LDH levels.

5. Discussion

This section outlines the observed correlation

between depression severity, as measured by Beck

scores, and elevated serum levels of GFAP, CK, and LDH in

individuals infected with COVID-19. The findings suggest

that as depressive symptoms intensify in COVID-19

patients, there is a corresponding increase in these

biomarkers. Notably, the study found that depressive

disorders were more prevalent among male COVID-19

patients compared to females.

It is estimated that approximately 10 - 20% of

individuals infected with SARS-CoV-2 develop

fluctuating symptoms that persist beyond 12 weeks after

the acute infection, a condition known as long COVID

syndrome (19). Previous literature has linked COVID-19

infection with various psychiatric conditions, including

depression, anxiety, and insomnia, with depression

being more prevalent than anxiety and stress in these

patients (20, 21).

Glial fibrillary acidic protein, a major intermediate

filament protein in glial cells, is predominantly

expressed in astrocytes and plays crucial roles in
regeneration, synaptic plasticity, and reactive gliosis

within the CNS (22). It is considered as an inflammatory

blood biomarker associated with various brain insults,

including neurodegenerative diseases (23). The

inflammatory response can affect microglial activity,
and astrocyte activation has the potential to disrupt

neurotransmitter balance, thereby exacerbating

depressive symptoms (24). A study by Ellis et al.

demonstrated elevated GFAP levels in CSF in patients

experiencing depressed mood during HIV infection,

reflecting greater astrocyte activation (24). In our study,

we observed a more pronounced increase in GFAP levels

associated with depressive mood in males compared to

females infected with COVID-19. The metabolic support

of neurons is closely related to astrocyte function (25).

While some studies have reported an inverse correlation

between GFAP levels and neurological complaints,

elevated GFAP levels (>700 pg/mL) have been observed

in unipolar depression, possibly due to the analysis of

GFAP in CSF samples as opposed to blood samples, as

was done in this study (26, 27). Astrocytic abnormalities,

primarily found in cortical and subcortical networks

associated with mood disorders, may contribute to

these findings (4).

In another study by Ellis et al. in 2022, males

exhibited higher GFAP levels than females, which
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Figure 1. Glial fibrillary acidic protein (GFAP) serum levels in males and females with COVID-19 infection and depressive disorders. Glial fibrillary acidic protein levels were
increased significantly in male patients vs. females (* P < 0.01). Glial fibrillary acidic protein serum levels were significantly increased in severe depression compared with the
mild status in both males and females (** P = 0.001).

supports our findings in the current study.

Similarly, elevated CK levels are common in COVID-19

patients, with levels increasing as disease severity

worsens (28). Additionally, LDH levels are significantly

altered in SARS-CoV-2-infected patients and may serve as

a biomarker for the severity of COVID-19 (29). Both CK

and LDH play critical roles in brain energy metabolism,

with CK facilitating the transfer of high-energy

phosphate from ATP to creatine, thereby maintaining

ATP homeostasis, and LDH catalyzing the conversion of

pyruvate to lactate in anaerobic glucose metabolism (1,

30, 31).

The results of this study align with previous findings

demonstrating an association between elevated CK and

LDH serum levels and the incidence of depression in

COVID-19 patients. Creatine kinase is present not only in

neurons but also in glial cells such as astrocytes and

oligodendrocytes within the CNS (32). In 1990, Balaita et

al. demonstrated increased serum CK levels in

individuals with depressive disorders, regardless of

whether they had unipolar or bipolar depression (32).

Additionally, electroconvulsive therapy (ECT), used for

drug-resistant depression, has been shown to reduce CK

activity in various brain regions (33).

Associations between serum CK and LDH levels and

different states of depression have been indicated in

some studies (34). Furthermore, previous research

found higher levels of CK and LDH in manic patients

(35), while other studies revealed lower serum CK levels

(34) in stressful environments and lower LDH levels in

depressed patients (1, 34).
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Figure 2. Beck score is shown in males and females infected with COVID-19. * This value was significantly higher in males vs. females (P = 0.04).

COVID-19 can cause hypoxia through direct lung

injury, leading to pneumonia and ARDS, which impair

gas exchange due to alveolar inflammation and fluid

accumulation. "Silent hypoxia" is another phenomenon

where patients have low oxygen levels without typical

symptoms, possibly due to impaired chemoreception.

Vascular complications such as pulmonary

thromboembolism and endothelial dysfunction also

contribute by obstructing blood flow and impairing

oxygen delivery to tissues (36, 37).

Hypoxia in COVID-19 patients can lead to severe
consequences, including organ dysfunction and an

increased risk of mortality. Prolonged oxygen deficiency

affects essential organs such as the brain, kidneys, and
heart, potentially resulting in multi-organ failure.

Severe hypoxia is strongly associated with higher
mortality rates, particularly in patients suffering from

ARDS. Additionally, hypoxia can impair brain function,

leading to symptoms such as confusion and agitation,

which complicate the management of patients (38, 39).

Hypoxia, a frequent complication of COVID-19, is also

closely linked to depressive and anxious states (28, 40).
Elevated CK and LDH levels have emerged as early

markers of COVID-19 infection, correlating with disease
severity (41, 42). Recent studies suggest that even

moderate hypoxia can trigger depression, anxiety, and

cognitive impairments (40). It is possible that hypoxia
induced by COVID-19 may directly lead to depression by

disrupting neuronal energy homeostasis. Supporting
this theory, hypoxia has been shown to increase plasma

CK and LDH levels (43-45).

Moreover, the psychological stress associated with

COVID-19 may further contribute to the development of

depression by triggering glucocorticoid secretion (46).

Glucocorticoids can disrupt neuronal energy

homeostasis and glucose metabolism, both of which

play key roles in the pathogenesis of depression (47-49).

https://brieflands.com/articles/ans-148518
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Figure 3. A, the mean ± SEM of serum level of creatine kinase (CK) in males and females infected with COVID-19 is shown. The level of CK is significantly higher in males vs.
females (**** P < 0.0001); B, the mean ± SEM of serum level of lactate dehydrogenase (LDH) in males and females infected with COVID-19 is shown. The level of LDH is significantly
higher in males vs. females (*** P = 0.0006).

Figure 4. A, the correlation between creatine kinase (CK) and beck scores is shown. There is positive correlation between CK serum levels and beck scores (r = 0.33, 95% CI = 0.176
to 0.469); B, the correlation between lactate dehydrogenase (LDH) and beck scores is shown. There is a positive correlation between CK serum levels and beck scores (r = 0.22, 95%
CI = 0.042 to 0.358).

Economic downturns often impact men more

severely, as observed during the COVID-19 pandemic. Job

loss, financial instability, and the pressure to fulfill

traditional provider roles can heighten men's stress and

anxiety. Studies indicate that job insecurity and

unemployment are strongly linked to adverse

psychological outcomes in men, contributing to

increased depression rates (50, 51).

Men and women typically employ different coping

strategies when dealing with stress. Men may be less

likely to seek social support or express emotional

distress, which can leave psychological issues

unaddressed. In contrast, women often turn to social

networks for emotional support, helping to alleviate

stress. This difference may explain the higher prevalence

of depression in men during COVID-19, as they may be

less equipped to manage the psychological burden (51,

52).

Research suggests that men and women have distinct

neurobiological responses to stress and trauma. The

hypothalamic-pituitary-adrenal (HPA) axis may function

differently based on gender, potentially increasing

men's vulnerability to depression during stressful

events like the pandemic. Furthermore, the

https://brieflands.com/articles/ans-148518
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inflammation and immune responses triggered by

COVID-19 may exacerbate mental health issues, with

men showing different inflammatory responses that

influence mood disorders (51, 53).

5.1. Conclusions

In conclusion, our findings suggest that the

mechanisms involved in metabolic support for

neuronal physiological functions may be altered in

COVID-19-infected patients, leading to depression. Glial

fibrillary acidic protein, CK, and LDH levels appear to be

associated with the severity of depression in COVID-19

patients. The simultaneous detection of elevated serum

GFAP, CK, and LDH levels may serve as an indicator of

depressive symptoms, particularly in males with COVID-

19 infection.
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