
Anesth Pain Med. 2025 June; 15(3): e161767 https://doi.org/10.5812/aapm-161767

Published Online: 2025 June 2 Research Article

Copyright © 2025, Behnaz et al. This open-access article is available under the Creative Commons Attribution 4.0 (CC BY 4.0) International License

(https://creativecommons.org/licenses/by/4.0/), which allows for unrestricted use, distribution, and reproduction in any medium, provided that the original

work is properly cited.

How to Cite: Behnaz F, Erfanian M, Chegini A. Comparison of the Effects of Isoflurane and Propofol as Anesthesia Maintenance on Plasma Mitochondrial DNA

Levels in Posterior Spinal Fusion Surgeries. Anesth Pain Med. 2025; 15 (3): e161767. https://doi.org/10.5812/aapm-161767.

Comparison of the Effects of Isoflurane and Propofol as Anesthesia

Maintenance on Plasma Mitochondrial DNA Levels in Posterior Spinal

Fusion Surgeries

Faranak Behnaz 1 , Mehrak Erfanian 1 , Azita Chegini 2 , *

1 Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

*Corresponding Author: Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. Email:
azita_chegini@yahoo.com

Received: 9 April, 2025; Revised: 20 May, 2025; Accepted: 24 May, 2025

Abstract

Background: Tissue injury resulting from surgical procedures leads to the release of various inflammatory agents, such as

mitochondrial DNA (mt-DNA). This can trigger inflammatory mechanisms that may harm different organs.

Objectives: In this study, we investigated the effects of isoflurane and propofol on mt-DNA levels during posterior spinal

fusion (PSF) surgery.

Methods: After meeting the inclusion criteria, 40 patients scheduled for PSF surgery were enrolled in a prospective

randomized controlled clinical trial and randomly divided into groups receiving propofol or isoflurane for maintenance of

anesthesia. Mitochondrial DNA levels were measured before surgery, one hour after induction of anesthesia, in the recovery

unit, and 24 hours post-surgery.

Results: There was no statistically significant difference between groups regarding age, gender, and mt-DNA levels prior to

surgery (P-value > 0.05). However, mt-DNA levels were significantly higher in the isoflurane group one hour after induction of

anesthesia (P-value = 0.001), in the recovery unit (P-value = 0.042), and 24 hours after surgery (P-value = 0.018).

Conclusions: Propofol was superior to isoflurane, as demonstrated by a lesser elevation in plasma levels of mt-DNA in PSF

patients.
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1. Background

Choosing the best anesthesia regimen for a surgical
procedure is one of the most challenging concerns of

any anesthesiologist (1). Postoperative pre-inflammatory

stimulation can induce a systemic inflammatory

response, potentially leading to dysfunction in multiple

organs (2). Major surgeries trigger various

inflammatory responses and catecholamine releases,

especially norepinephrine (3, 4), which can lead to

systemic hypertension, platelet aggregation,

tachycardia, increased myocardial demand, impaired

wound healing, and impaired blood flow in coronary

and pulmonary arteries (5). Early post-surgery

inflammatory responses result in an inadequate

postoperative course, increased morbidity rates, and

early mortality (6). As a result, the primary goal of ideal

anesthesia is to utilize the best anesthetics to ensure

adequate muscle relaxation, analgesia, and

hemodynamic stabilization (7-9).

In the last decade, mitochondria have gained
considerable attention due to their significant role in

energy production, protein synthesis, and programmed

cellular death, with their signaling in critical situations
evaluated in multiple studies (10, 11). Based on recent

studies, mitochondrial deoxyribonucleic acid (mt-DNA)
plays a crucial role in patients' postoperative prognosis

by influencing the immune system (12). The mt-DNA is

released from human cells in response to stress and
critical situations (like surgery), and each
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mitochondrion possesses different copies of mt-DNA,

which are related to the size and quantity of

mitochondria (13). This variation reflects the function of
these organelles in protein and energy synthesis (14).

Factors such as the type of surgical procedure, the
duration of anesthesia, and the anesthetics used will

influence the amount of mt-DNA released into the

plasma (12). Free oxidative radicals will damage mt-DNA,
leading to mitochondrial dysfunction, systemic

inflammation, and apoptosis (15). Several studies have
demonstrated higher levels of mt-DNA in traumatic and

surgical circumstances (16, 17).

Considering the increasing prevalence of posterior

spinal fusion (PSF) surgeries (18) and limited

comparative data on anesthetic effects beyond pain and

hemodynamics (19, 20), this study compared the impact

of propofol and isoflurane anesthesia on mt-DNA gene

levels during and after PSF.

2. Objectives

The study aimed to assess the differential effects of

these anesthetics on mt-DNA levels in the PSF setting.

3. Methods

In a prospective randomized controlled clinical trial,
patients scheduled for elective PSF surgery at Shohada

Tajrish Hospital in Tehran, Iran, from September 2023 to

March 2024, classified as class I or II according to the

American Society of Anesthesiologists (ASA)

classification, aged between 30 and 70 years, were
enrolled in the study (inclusion criteria). Patients with a

history of prior PSF, ASA classification of III or IV, a

history of malignancies, cardiovascular or chronic

inflammatory diseases, long-term corticosteroid use,

cases requiring emergent surgeries, a history of

substance abuse, and those with intraoperative

hemodynamic instability were excluded from the study

(exclusion criteria). The study was originally registered

by the Shahid Beheshti Committee of Ethics

(IR.SBMU.MSP.REC.1402.486) and the Iranian Registry of

Clinical Trials (IRCT20190121042444N5).

Considering a significance level of 0.05 and a power

of 80%, the sample size was calculated using the
Cochrane formula (21). Approximately, considering a 5%

margin of error and a potential dropout rate of 10%, 23

participants per group were required. However, due to
resource limitations and feasibility considerations, we

enrolled 20 participants per group (total n = 40). After
detailing the necessary study information for each

patient and addressing their related questions, written

informed consent was obtained from each individual,

and each patient was assigned a random number by the

researcher. Patients were randomly divided into two

groups (receiving propofol or isoflurane as
maintenance of anesthesia) based on their random

number utilizing computer software.

Patients' demographic characteristics, including age

and gender, were recorded in prepared questionnaires

the night before anesthesia. Preoperative routine fasting

time for all participants was considered. Before

induction of anesthesia, all patients were monitored

using routine anesthesia monitoring, including

electrocardiography (ECG), pulse oximetry (SPO2), heart

rate (HR) monitoring, non-invasive blood pressure

(NIBP) monitoring, capnography (EtCO2), and Bispectral

Index (BIS) monitoring. Induction of anesthesia in all

patients was similar and consisted of 0.02 mg/kg
intravenous (IV) midazolam, 2 - 4 µg/kg IV fentanyl, 1.5

mg/kg IV lidocaine, 1 - 1.5 mg/kg IV propofol, and 0.2

mg/kg IV Cisatracurium as a muscle relaxant. Following
tracheal intubation, radial artery cannulation was

performed for monitoring. Anesthesia was maintained
by a 0.1 - 0.2 mg/kg/min IV infusion of propofol and a 1 -

2.5% mean alveolar concentration (MAC) of isoflurane in
each group, aiming to keep the BIS within the range of

40 - 60. 2 mg of IV Cisatracurium and 50 - 100 µg IV

fentanyl were repeated at 45-minute intervals.

Blood samples for plasma mitochondrial DNA

(mtDNA) measurement were collected at four time

points: Before anesthesia induction, one hour post-

induction (pre-incision), post-extubation, and 24 hours

post-surgery. Samples for the one-hour post-induction

and post-extubation time points were drawn from the

radial artery catheter, while pre-induction and 24-hour

post-surgery samples were drawn from the cubital vein.

All samples were collected in ethylene diamine

tetraacetic acid (EDTA) coated tubes (non-vacuum

K2EDTA tubes, Hebei Xinle Sci & Tech Co., Ltd) and
centrifuged at 1600 rpm for 10 minutes. Plasma samples

were frozen at -70°C until evaluation, then thawed to

4°C.

Mitochondrial DNA was extracted using the QIAamp

Blood DNA mini kit (Qiagen, Germany), and NADH-

dehydrogenase subunit 6 (ND6 gene levels, a mt-DNA -

specific gene, were quantified by real-time PCR in

duplicate. Real-time PCR with SYBR Green was

performed to analyze the ND6 gene, and it was

normalized to a housekeeping gene.

SPSS software (version 20) was used for data analysis.
Data normality was assessed using the Shapiro-Wilk test.

Normally distributed quantitative data are presented as

mean ± standard deviation; qualitative data are

presented as frequencies and percentages. Quantitative
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variables were analyzed using independent t-tests, while

qualitative data were analyzed using Pearson's Chi-

square tests. Statistical significance was defined as P <

0.05.

4. Results

After meeting the inclusion criteria, 40 patients

scheduled for elective PSF surgery were enrolled in the

study and randomly divided into two groups of 20

patients each. Among the 40 patients, 9 were males and

31 were females. Figure 1 illustrates the gender

distribution in both groups. The difference in gender

between the groups was evaluated statistically and

found to be insignificant (P-value = 0.705). The mean age

of patients in the propofol and isoflurane groups was

56.90 ± 5.902 and 54.35 ± 10.282 years, respectively.

Figure 2 depicts the age distribution in each group. The

difference in patient age between the groups was not

statistically significant.

Plasma mtDNA (ND6) levels were measured in

patients at four time points: Pre-anesthesia, one hour

post-induction, post-extubation (recovery unit), and 24

hours post-surgery. Table 1 shows mean mtDNA plasma

levels (ng/μL) for each time point. The two groups did

not differ significantly before anesthesia (P = 0.799).

Statistically significant differences in mt-DNA levels

were observed between groups after anesthesia

induction (P = 0.001), in the recovery unit (P = 0.042),

and 24 hours post-surgery (P = 0.018), with the propofol

group exhibiting lower levels.

5. Discussion

Anesthesia research is evolving beyond

hemodynamic and hematologic effects (22) to include
molecular, genetic, and pharmacogenetic

investigations. Enabled by new molecular technologies,

pharmacogenetics is rapidly advancing the

understanding of individual variations in drug response

based on genetic factors. This progress holds promise
for personalized anesthetic regimens to improve

patient comfort, safety, and reduce morbidity and

mortality (23). Furthermore, studies show that elevated

postoperative plasma mt-DNA levels, a marker of

cellular injury and inflammation, may negatively
impact outcomes (24, 25). This elevation may lead to

long-term complications, including sepsis and even

death (26, 27). The increase in plasma mt-DNA levels in

patients admitted to the intensive care unit (ICU) has

resulted in severe respiratory distress and a higher
mortality rate (28). In 2014, McIlroy et al. showed the

elevation of mt-DNA and inflammatory cytokines in the

postoperative period (29). Pencovich et al. in 2021

demonstrated the relationship of elevation in mt-DNA

plasma level following pancreaticoduodenectomy (25).

All of this evidence shows the crucial role of mt-DNA as a

predictive biomarker for postoperative inflammatory

response and its side effects.

Propofol is an IV anesthetic first produced in the

United Kingdom and introduced into the market in 1986

in Europe and the United States of America (30, 31). Due

to its shorter half-life, lack of serious side effects, and

low incidence of postoperative nausea and vomiting,

propofol has become the most popular anesthetic for

induction and maintenance of anesthesia in the last

three decades (32-34). Several studies show the anti-

inflammatory properties of this agent (35, 36).

Isoflurane is a volatile anesthetic and a halogenated

ether formula (37, 38). Compared to other volatile

anesthetics such as halothane, isoflurane preserves

myocardial contractility by more than 20%. Some recent

studies have demonstrated the anti-inflammatory

effects of this volatile (39). Consistent with previous

research, our study found that both propofol and

isoflurane reduced mtDNA levels within 24 hours, with

propofol causing a significantly larger reduction.

Kotani et al. demonstrated that propofol induces

lower inflammatory respiratory responses and pre-

inflammatory cytokine expression compared to

isoflurane (40). This study reviewed the effect of

anesthetics on different surgical procedures. Niezgoda

and Morgan in 2013 showed the importance of

anesthetic effects on mt-DNA mutations and suggested

the preoperative evaluation of mitochondrial gene

mutations (41). In 2015, Sayed et al. showed that propofol

causes fewer improper inflammatory responses than

isoflurane (42). Similar to our study, they measured the

inflammatory factors at different intervals. However, mt-

DNA plasma level was not the indicator of inflammatory

response in Sayed’s study. Kajimoto et al. in 2016 showed

a different result, indicating the superiority of

isoflurane as maintenance of anesthesia with lower

plasma levels of mt-DNA (43). Unlike our study, this was

a rodent study. In 2019, Safari et al. compared the anti-

inflammatory properties of isoflurane and propofol as

the maintenance of anesthesia in brain tumor surgeries.

The results showed that isoflurane causes more

elevation in plasma levels of inflammatory cytokines

(12).

Our study was limited by the evaluation of only one

subtype of mt-DNA. Therefore, we suggest conducting

studies regarding other subtypes. Another limitation

was that our study did not consider other anesthesia

components, including surgery duration, amount of

blood loss, and levels of surgery. We suggest conducting
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Figure 1. Gender distribution

Figure 2. Age distribution

different studies on other anesthetics in the settings of

other major surgeries.

5.1. Conclusions

The anti-inflammatory properties of propofol were

superior to those of isoflurane, as demonstrated by a

lesser elevation in plasma levels of the mt-DNA gene.

Propofol might be a preferable anesthetic for

maintaining anesthesia during PSF surgery.

https://brieflands.com/articles/aapm-161767
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Table 1. Comparison of Mean of Plasma mt-DNA Levels (ng/μL) Between Patient Groups

Variables Propofol Isoflurane P-Value

Before anesthesia 15.30 ± 20.88 × 105 19.68 ± 21.92 × 105 0.799

After induction 5.04 ± 6.57 × 105 19.81 ± 17.55 × 105 0.001

Recovery 8.38 ± 10.29 × 105 15.13 ± 14.69 × 105 0.042

24 (h) later 0.10 ± 0.15 × 105 3.44 ± 6.00 × 105 0.018

Abbreviation: mt-DNA, mitochondrial DNA.
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